×

Derivations of differential forms along the tangent bundle projection. (English) Zbl 0748.58002

In J. Phys. A 17, 1999-2009 (1984; Zbl 0542.58011), the third author, F. Cantrijn and M. Crampin introduced a new approach to the characterization of Lagrangian systems, a method which led to a new calculus of certain differential forms on \(T(M)\) [the third author, Differential geometry and its applications, Proc. Conf., Brno/Czech. 1986, Math. Appl., East Eur. Ser. 27, 279-299 (1987; Zbl 0635.58017)]. The present paper introduces a systematic approach to the subject.
Let \(\tau: T(M)\to M\) be the tangent bundle projection and let \(\pi: \Omega(M)\to M\) be the bundle of differential forms. A form along \(\tau\) is a section of the pull-back bundle \(\tau^*\pi\); denote by \(\Lambda(\tau)\) this algebra of sections. First, the authors study the derivations of \(\Lambda(\tau)\): given a connection on \(T(M)\), they obtain classification and characterization of such derivations.
Now, a second-order vector field \(\Gamma\) can be considered as a section \(\gamma\) of \(T^ 2(M)\to T(M)\). The composition of the first prolongation of forms (and fields) along \(\tau\) with the given section \(\gamma\) creates forms (and fields) on \(T(M)\). The authors prove that these objects are the ingredients of the calculus in [the third author, loc. cit.] and use the previous theory of derivations to study them.

MSC:

58A10 Differential forms in global analysis
70H03 Lagrange’s equations
Full Text: DOI

References:

[1] Ayassou, E. K., Cohomologies définiés pour une 1-forme vectorielle plate, Thése de Doctorat (1985), Université de Grenoble
[2] Cariñena, J. F.; López, C.; Martínez, E., A new approach to the converse of Noether’s theorem, J. Phys. A: Math. Gen., 22, 4777-4786 (1989) · Zbl 0739.58016
[3] Cariñena, J. F.; López, C.; Martínez, E., A geometric characterisation of Lagrangian second-order differential equations, Inverse Problems, 5, 691-705 (1989) · Zbl 0704.34017
[4] Cariñena, J. F.; López, C.; Martínez, E., Sections along a map applied to higher-order Lagrangian mechanics, Noether’s theorem (1990), Preprint
[5] Cariñena, J. F.; Martínez, E., Symmetry theory and Lagrangian inverse problem for time-dependent second-order differential equations, J. Phys. A: Math. Gen., 22, 2659-2665 (1989) · Zbl 0709.58015
[6] Crampin, M., Generalized Bianchi identities for horizontal distributions, Math. Proc. Camb. Phil. Soc., 94, 125-132 (1983) · Zbl 0521.53023
[7] Crampin, M.; Ibort, L. A., Graded Lie algebras of derivations and Ehresmann connections, J. Math. Pures et Appl., 66, 113-125 (1987) · Zbl 0615.53017
[8] Crampin, M.; Sarlet, W.; Cantrijn, F., Higher-order differential equations and higher-order Langrangian mechanics, Math. Proc. Camb. Phil. Soc., 99, 565-587 (1986) · Zbl 0609.58049
[9] de León, M.; Rodrigues, P. R., Methods of Differential Geometry in Analytical Mechanics, Mathematics Studies, 158 (1989), North-Holland: North-Holland Amsterdam · Zbl 0687.53001
[10] Frölicher, A.; Nijenhuis, A., Theory of vector-valued differential forms, Proc. Ned. Acad. Wetensch. Sér. A, 59, 338-359 (1956) · Zbl 0079.37502
[11] Grifone, J., Structure presque tangente et connexions I, Ann. Inst. Fourier, 22, 1, 287-334 (1972) · Zbl 0219.53032
[12] Grifone, J., Structure presque tangente et connexions II, Ann. Inst. Fourier, 22, 3, 291-338 (1972) · Zbl 0236.53027
[13] Hermann, R., Gauge fields and Cartan-Ehresmann Connections. Part A (1977), Math. Sci. Press: Math. Sci. Press Brookline Mass
[14] Klein, J., Almost symplectic structures in dynamics, (Krupka, D.; Švec, A., Differential Geometry and its Applications (1987), J.E. Purkyně University: J.E. Purkyně University Brno), 79-90, Proc. Conf. Brno 1986 · Zbl 0646.58004
[15] Michor, P. W., Remarks on the Frölicher-Nijenhuis bracket, (Krupka, D.; Švec, A., Differential Geometry and its Applications (1987), J.E. Purkyně University: J.E. Purkyně University Brno), 197-220, Proc. Conf. Brno 1986 · Zbl 0633.53024
[16] Pidello, G.; Tulczyjew, W. M., Derivations of differential forms on jet bundles, Ann. Math. Pura Applicata, 147, 249-265 (1987) · Zbl 0642.58004
[17] Poor, W. A., Differential Geometric Structures (1981), McGraw-Hill: McGraw-Hill New York · Zbl 0493.53027
[18] Sarlet, W., Geometrical structures related to second-order equations, (Krupka, D.; Švec, A., Differential Geometry and its Applications (1987), J.E. Purkyně University: J.E. Purkyně University Brno), 279-288, Proc. Conf. Brno 1986 · Zbl 0635.58017
[19] Sarlet, W.; Cantrijn, F.; Crampin, M., A new look at second-order equations and Lagrangian mechanics, J. Phys. A: Math. Gen., 17, 1999-2009 (1984) · Zbl 0542.58011
[20] Sarlet, W.; Cantrijn, F.; Crampin, M., Pseudo-symmetries, Noether’s theorem and the adjoint equation, J. Phys. A: Math. Gen., 20, 1365-1376 (1987) · Zbl 0623.58045
[21] Sarlet, W.; Prince, G. E.; Crampin, M., Adjoint symmetries for time-dependent second-order equations, J. Phys. A: Math. Gen., 23, 1335-1347 (1990) · Zbl 0713.58018
[22] Saunders, D. J., The Geometry of Jet Bundles, London Math. Soc. Lect. Notes Series, 142 (1989), Cambridge University Press · Zbl 0665.58002
[23] Yano, K.; Ishihara, S., Tangent and Cotangent Bundles, Pure and Applied Mathematics, 16 (1973), Marcel Dekker: Marcel Dekker New York · Zbl 0262.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.