×

Prolégomènes à l’étude des polynômes orthogonaux semi- classiques. (Preliminary remarks for the study of semi-classical orthogonal polynomials). (English) Zbl 0636.33009

The aim of the author is to establish a general theory of semiclassical orthogonal polynomials. To this end he tries first to determine all the sequences of orthogonal polynomials whose derivatives form quasi- orthogonal sequences. It is shown that this problem is equivalent to the determination of all the sequences of orthogonal polynomials which satisfy certain relations as follows: \[ \Phi (x)P'_{n+1}(x)=\sum^{n+t}_{\nu =n-s}\theta_{n,\nu}P_{\nu}(x), \] where \(\Phi(x)\) and \(\theta_{n,\nu}\) are suitable functions and numbers, respectively. Then he establishes an equation which gives all the linear forms related to a given sequence of orthogonal polynomials. He gives also the conditions under which a sequence, orthogonal with respect to a given linearform, is also orthogonal with respect to an another given linear form. Notice that the author’s definition of “quasi-orthogonality” is somewhat different from what is commonly used.
Reviewer: M.Idemen

MSC:

33E99 Other special functions
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Hahn, W., Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Zeit., 39, 634-638 (1935) · JFM 61.0377.01
[2] Krall, H. L., On derivatives of orthogonal polynomials, Bull. Amer. Math. Soc., 42, 423-428 (1936) · Zbl 0014.39903
[3] Geronimus, J. L., On polynomials with respect to numerical sequences and on Hahn’s theorems, Izv. Akad. Nauk, 4, 215-228 (1940) · Zbl 0025.04104
[4] Al-Salam, W. A.; Chihara, T. S., Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal., 3, 1, 65-70 (1972) · Zbl 0238.33010
[5] Ronveaux, A., Polynômes orthogonaux dont les polynômes dérivés sont quasi-orthogonaux, C. R. Acad. Sc. Paris, 289 A, 433-436 (1979) · Zbl 0431.33006
[6] E.Hendriksen - H.Van Rossum,Semi-classical orthogonal polynomials, Polynômes orthogonaux et applications, Symposium Laguerre, Bar-le-Duc (1984), Lectures Notes, p. 385, à paraître.
[7] Bonan, S.; Nevai, P., Orthogonal polynomials and their derivatives I, J. of Approx. Th., 40, 2, 134-147 (1984) · Zbl 0533.42015
[8] Chihara, T. S., On quasi-orthogonal polynomials, Proc Amer. Math. Soc., 8, 765-767 (1957) · Zbl 0078.25604
[9] Dickinson, D., On quasi-orthogonal polynomials, Proc. Amer. Math. Soc., 12, 185-194 (1961) · Zbl 0125.31502
[10] Shohat, J. A., On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc., 42, 461-496 (1937) · JFM 63.0960.02
[11] Maroni, P., Une généralisation du théorème de Favard-Shohat sur les polynômes orthogonaux, C. R. Acad. Sc. Paris, 293, 19-22 (1981) · Zbl 0467.42018
[12] Hahn, W., Über höhere Ableitungen von orthogonal Polynomen, Math. Zeit., 43, 101 (1937) · JFM 63.0316.01
[13] Krall, H. L., On higher derivatives of orthogonal polynomials, Bull. Amer. Math. Soc., 42, 867-870 (1936) · Zbl 0016.01905
[14] Maroni, P., Une caractérisation des polynômes orthogonaux semi-classiques, C. R. Acad. Sc. Paris, 301, 269-272 (1985) · Zbl 0591.33009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.