×

Localization in disordered, nonlinear dynamical systems. (English) Zbl 0629.60105

We study localization and wave trapping in disordered, nonlinear dynamical systems. For some models of classical, disordered anharmonic crystal lattices, we prove that, with large probability, there are quasiperiodic lattice vibrations of finite total energy which lie on some infinite-dimensional, compact invariant tori in phase space. Such vibrations remain localized, for all times, and there is no transport of energy through the lattice. Our general concepts and techniques extend to other systems, such as disordered, nonlinear Schrödinger equations, or randomly coupled rotors.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
58J65 Diffusion processes and stochastic analysis on manifolds
81P20 Stochastic mechanics (including stochastic electrodynamics)
74H50 Random vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] P. W. Anderson,Phys. Rev. 109:1492 (1958). · doi:10.1103/PhysRev.109.1492
[2] Ph. Choquard,The Anharmonic Crystal (W. A. Benjamin, New York, 1967). · Zbl 0919.35131
[3] K. Ishii,Suppl. Progr. Theor. Phys. 53:77 (1977). · doi:10.1143/PTPS.53.77
[4] F. Wegner,Z. Phys. B 22:273 (1975); Ya. Gol’dsheid, S. Molchanov, and L. Pastur,Funct. Anal. Appl. 11:1 (1977); H. Kunz and B. Souillard,Commun. Math. Phys. 78:201 (1980); F. Delyon, H. Kunz, and B. Souillard,J. Phys. A 16(1), 25 (1983); R. Carmona,Duke Math. J 49:191 (1982). · doi:10.1007/BF01362250
[5] J. Fröhlich and T. Spencer,Commun. Math. Phys. 88:151 (1983). · Zbl 0519.60066 · doi:10.1007/BF01209475
[6] J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer,Commun. Math. Phys. 101:21 (1985); B. Simon and T. Wolff, Comm. Pure Appl. Math., to appear; F. Delyon, Y. Lévy and B. Souillard, Preprint, 1985. · Zbl 0573.60096 · doi:10.1007/BF01212355
[7] A. Weinstein,Ann. Math. 98:377 (1973);Inv. Math. 20:47, (1973); J. Moser,Commun. Pure Appl. Math. 29:727 (1976). · Zbl 0271.58008 · doi:10.2307/1970911
[8] N. Kolmogorov,Dokl. Akad. Nauk. 98:527 (1954); V. Arnol’d,Russian Math. Survey 18:9, 85 (1963); J. Moser,Nachr. Akad. Wiss. Göttingen I 1a, (1962).
[9] N. Nekhoroshev,Russian Math. Survey 32:1 (1977). · Zbl 0389.70028 · doi:10.1070/RM1977v032n06ABEH003859
[10] C. E. Wayne, On the elimination of non-resonance harmonics, and Bounds on the trajectories of a system of weakly coupled rotators, preprints, 1984/85.
[11] J. Bellissard and M. Vittot, preprint, Marseille, 1985.
[12] G. Gallavotti,The Elements of Mechanics, (Springer, New York, 1983), appendices and references. · Zbl 0512.70001
[13] L. Chierchia and G. Gallavotti,Nuovo Cimento B 67:277, 1982; see also G. Gallavotti, inScaling and Self-Similarity in Physics, Jürg Fröhlich, Ed. (Birkhäuser, Boston, 1983). · doi:10.1007/BF02721167
[14] J. Pöschel, Ph. D. thesis, ETH?Zürich, 1981.
[15] E. P. Gross,Nuovo Cimento 20:454 (1961). · Zbl 0100.42403 · doi:10.1007/BF02731494
[16] L. P. Pitaevskii,Sov. Phys.-JETP 13:451 (1961).
[17] A. W. Overhauser,Phys. Rev. Lett. 4:415 (1960); E. H. Lieb and M. de Llano,J. Math. Phys. 19:860 (1978); B. Sriram Shastry,Phys. Rev. Lett. 50:633 (1983). · Zbl 0091.23005 · doi:10.1103/PhysRevLett.4.415
[18] J. R. Schrieffer,Theory of Superconductivity (W. A. Benjamin, New York, 1964); P. G. DeGennes,Superconductivity of Metals and Alloys, (W. A. Benjamin, New York, 1964).
[19] P. A. Vuillermot,Commun. Math. Phys. 76:1 (1980). · Zbl 0447.47025 · doi:10.1007/BF01197107
[20] L. D. Landau and E. M. Lifshitz,Phys. Z. Sowj. Union 8:153 (1935).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.