×

Scattering of radiation by a quasiperiodic two-dimensional medium. (English) Zbl 0642.35049

We study the scattering of radiation by a medium presenting inhomogeneities distributed in a quasiperiodic way. We show the existence of quasiperiodic solutions of the two-dimensional stationary wave equation, under certain conditions on the index of refraction, using a technique based on Dinaburg-Sinai method for one-dimensional Schrödinger equation with a quasiperiodic potential. Moreover we show that the energy spectrum contains a nonempty absolutely continuous component, with a subset having high degeneracy, provided the inhomogeneities are small enough.

MSC:

35L05 Wave equation
78A45 Diffraction, scattering
35J10 Schrödinger operator, Schrödinger equation
35B10 Periodic solutions to PDEs
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI

References:

[1] W. G. Egan and T. W. Hilgeman,Optimal Properties of Inhomogeneous Materials (Academic Press, New York, 1979).
[2] N. W. Ashcroft,Electromagnetic Propagation in Mixed Media (Lecture Notes in Physics No. 154, Springer, New York, 1982).
[3] J. D. Jackson,Classical Electrodynamics (John Wiley and Sons, New York, 1967).
[4] G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers (Clarendon Press, Oxford, 1979). · Zbl 0423.10001
[5] V. I. Arnold, Small divisor problems in classical and celestial mechanics,Usp. Mat. Nauk. 18(6)(114):91-192 (1963);
[6] A. N. Kolmogorov, On conservation of conditionally periodic motion for a small change in Hamilton’s functions,Dokl. Akad. Nauk. USSR 98:527 (1954); A.N. Kolmogorov, General theory of dynamical systems and classical mechanics,Proc. Int. Congress Math., Amsterdam (1957) [in Russian, translated in R. Abraham and J. E. Marsden,Foundations of Mechanics (The Benjamin Cummings Publ. Cie. Inc., 1978), Appendix p. 741];
[7] J. Moser, On invariant curves of an area preserving mapping of an annulus,Nachr. Akad. Wiss. G?ttingen Math. Phys. K1 11a(l) (1962); J. Moser, Convergent series expansions for quasi-periodic motions,Math. Ann. 169:136-176 (1967).
[8] E. Dinaburg and Y. Sinai, The one-dimensional Schr?dinger equation with a quasiperiodic potential,Func. Anal. App. 9:279 (1975). · Zbl 0333.34014 · doi:10.1007/BF01075873
[9] E. D. Belokolos, Quantum particle in a one-dimensional deformed lattice. Estimates on the gaps in the spectrum,Teor. Mat. Fiz. 25(3):344-357 (1975).
[10] H. R?ssmann, On the one-dimensional Schr?dinger equation with a quasiperiodic potential,Ann. N. Y. Acad. Sci. 357:90 (1980). · doi:10.1111/j.1749-6632.1980.tb29679.x
[11] R. E. Peierls,Z. Phys. 80:763 (1933). · doi:10.1007/BF01342591
[12] A. N. Bloch, in Lecture Notes in Physics No. 65 (Springer, New York, 1977), p. 317; S. Aubry, Un escalier du diable dans la thio-Ur?e?, Suppl. No. 45,Courrier du CNRS, p. 34 (1982).
[13] J. Avron and B. Simon, Almost periodic Hill’s equation and the Rings of Saturn,Phys. Rev. Lett. 46:1166 (1981). · Zbl 0484.35069 · doi:10.1103/PhysRevLett.46.1166
[14] J. Bellissard, Schr?dinger operators with almost periodic potential: An overview, talk delivered at the VIth International Conference on Mathematical Physics, Berlin, August 11-20, 1981; B.Simon, Almost periodic Schr?dinger operators: A review,Adv. Appl. Math. 3:463-490 (1982).
[15] W. Craig and B. Simon, Log H?lder continuity of the integrated density of state for stochastic Jacobi matrices,Commun. Math. Phys. 90:207-218 (1983); J.Lacroix, Singularit? du spectre de l’op?rateur de Schr?dinger al?atoire dans un ruban ou un demiruban,Ann. Inst. Henri Poincar?, Sec. A 38(4):385-399 (1983). · Zbl 0532.60057 · doi:10.1007/BF01205503
[16] J. Bellissard, R. Lima, and D. Testard, A metal-insulator transition for the almost Mathieu model,Commun. Math. Phys. 88:207-234 (1983). · Zbl 0542.35059 · doi:10.1007/BF01209477
[17] M. Berger, P. Gauduchon, and E. Mazet,Le spectre d’une vari?t? riemanienne (Lecture Notes in Mathematics No. 194, Springer, New York, 1971, p. 126); M. Gaffney,Ann. Math. 60:140-145 (1954).
[18] C. E. Wayne, The KAM Theory of Systems with Short Range Interactions, I and II,Commun. Math. Phys. 96(3):311-329, 331-344 (1984) (I thank M. Vittot for information about this subject). · Zbl 0585.58023 · doi:10.1007/BF01214577
[19] M. Serra, Thesis, Op?rateur de Laplace-Beltrami sur une vari?t? quasip?riodique, University of Provence, Marseille (1983).
[20] H. R?ssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus (Lecture Notes in Physics No. 38, Springer, New York (1975, pp. 598-624).
[21] H. R?ssmann, Note on Sums Containing Small Divisors,Commun. Pure Appl. Math. 29:755-758 (1976). · Zbl 0336.35020 · doi:10.1002/cpa.3160290615
[22] N. M. Krylov and N. N. Bogoliubov, Introduction to non-linear mechanics,Izd-vo Akad. Nauk. Ukr. USSR, Kiev (1937) [in Russian; a free translation by S. Lefshetz,Ann. Math. Stud. 11:106 (1947)].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.