×

A variational approach to stochastic nonlinear problems. (English) Zbl 0629.60069

A variational principle is formulated which enables the mean value and higher moments of the solution of a stochastic nonlinear differential equation to be expressed as stationary values of certain quantities. Approximations are generated by using suitable trial functions in this variational principle and some of these are investigated numerically for the case of a Bernoulli oscillator driven by white noise. Comparison with exact data available for this system shows that the variational approach to such problems can be quite effective.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] J. O. Eaves and W. P. Reinhardt,J. Stat. Phys. 25:127 (1981). · doi:10.1007/BF01008482
[2] J. B. Morton and S. Corrsin,J. Stat. Phys. 2:153 (1970). · doi:10.1007/BF01009737
[3] R. H. Kraichnan,J. Fluid Mech. 41:189 (1970). · Zbl 0198.59503 · doi:10.1017/S0022112070000587
[4] W. C. Meecham and A. Siegel,Phys. Fluids 7:1178 (1964). · Zbl 0134.21804 · doi:10.1063/1.1711359
[5] M. Shugard, J. C. Tully, and A. Nitzan,J. Chem. Phys. 69:336 (1978). · doi:10.1063/1.436358
[6] P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953). · Zbl 0051.40603
[7] B. L. Moiseiwitsch,Variational Principles (Wiley-Interscience, New York, 1966).
[8] P. C. Martin, E. D. Siggia, and H. A. Rose,Phys. Rev. A 8:423 (1973). · doi:10.1103/PhysRevA.8.423
[9] R. Phythian,J. Phys. A8:1423 (1975).
[10] R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965). · Zbl 0176.54902
[11] W. D. Iwan and A. B. Mason,Int. J. Non-Linear Mech. 15:71 (1980). · Zbl 0428.73084 · doi:10.1016/0020-7462(80)90001-3
[12] M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 30:617 (1983). · Zbl 0587.60047 · doi:10.1007/BF01009680
[13] B. J. West, G. Rovner, and K. Lindenberg,J. Stat. Phys. 30:633 (1983). · Zbl 0588.60053 · doi:10.1007/BF01009681
[14] J. H. Halton,SIAM Rev. 12:1 (1970). · Zbl 0193.46901 · doi:10.1137/1012001
[15] R. H. Kraichnan,Phys. Rev. Lett. 42:1263 (1979). · doi:10.1103/PhysRevLett.42.1263
[16] R. H. Kraichnan, inNonlinear Dynamics, H. G. Helleman, ed. (New York Academy of Sciences, New York, 1980).
[17] R. H. Kraichnan, inTheoretical Approaches to Turbulence, D. L. Dwoyeret al., ed. (Springer, New York, 1985).
[18] E. Gerjuoy, A. R. P. Rau, and L. Spruch,Rev. Mod. Phys. 55:725 (1983). · doi:10.1103/RevModPhys.55.725
[19] J. Frenkel,Wave Mechanics: Advanced General Theory (Oxford University Press, London, 1934). · Zbl 0013.08702
[20] R. Phythian,J. Fluid Mech. 53:469 (1972). · Zbl 0245.76043 · doi:10.1017/S0022112072000266
[21] B. Caroli, C. Caroli, and B. Roulet,J. Stat. Phys. 26:83 (1981). · doi:10.1007/BF01106788
[22] V. F. Baibuz, V. Yu. Zitserman, and A. N. Drozdov,Physica 127A:173 (1984). · Zbl 0602.76096 · doi:10.1016/0378-4371(84)90126-2
[23] R. Phythian,J. Phys. A10:777 (1977).
[24] R. Phythian and W. D. Curtis,J. Phys. A13:1575 (1980).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.