×

Diffusion in a potential field: Path-integral approach. (English) Zbl 0602.76096

Within the framework of the path-integral formalism we develop a simple method to solve the Fokker-Planck diffusion problems in a potential field, including the decay of an unstable state. Unlike previous approaches, it yields a unified treatment of all time regimes, and is legitimate for any value of the diffusion coefficient. An attractive feature of our method is that it provides numerical results in regions where there are no analytical solutions. In particular, being valid for an arbitrary shape of the potential, it is very useful for studying a diffusion problem near and in the critical point where the standard treatments break down. Moreover, our method, after a simple transformation, permits to obtain also the first passage times of the process.

MSC:

76R50 Diffusion
Full Text: DOI

References:

[1] Czajkowski, G., Z. Phys., B43, 87 (1981)
[2] Mörsch, M.; Risken, H.; Vollmer, H. D., Z. Phys., B32, 245 (1979)
[3] Schenzle, A.; Brand, H., Phys. Rev. A, 20, 1628 (1979)
[4] Fonseca, T.; Grigolini, P.; Marin, P., Phys. Lett., 88A, 117 (1982)
[5] Fujisaka, H.; Grossmann, S., Z. Phys., B43, 69 (1981)
[6] Saito, Y., J. Phys. Soc. Japan, 41, 388 (1976)
[7] Vollmer, H. D.; Risken, H., Physica, 110A, 106 (1982)
[8] Reichl, L. E., J. Chem. Phys., 77, 4199 (1982)
[9] van Kampen, N. G., J. Stat. Phys., 17, 71 (1977)
[10] Caroli, B.; Caroli, C.; Roulet, B., J. Stat. Phys., 21, 415 (1979)
[11] Dekker, H., Physica, 103A, 80 (1980)
[12] Tomita, H.; Ito, A.; Kidachi, H., Prog. Theor. Phys., 56, 786 (1976)
[13] Fu-kang, Fang, Phys. Lett., 79A, 373 (1980)
[14] Edholm, O.; Leimar, O., Physica, 98A, 313 (1979)
[15] Larson, R. S.; Kostin, M. D., J. Chem. Phys., 69, 4821 (1978)
[16] de Haro, M. López, Physica, 111A, 65 (1982)
[17] Matkowsky, B. J.; Schuss, Z., SIAM J. Appl. Math., 40, 242 (1981) · Zbl 0477.60057
[18] Caroli, B.; Caroli, C.; Roulet, B., J. Stat. Phys., 26, 83 (1981)
[19] Adv. Chem. Phys., 34, 245 (1976)
[20] Adv. Chem. Phys., 46, 195 (1981)
[21] Weiss, U., Phys. Rev. A, 25, 2444 (1982)
[22] Weiss, U.; Haeffner, W., (Antoine, J. P.; Tirapequi, E., Functional Integration (1980), Plenum: Plenum New York), 311 · Zbl 0471.00015
[23] de Pasquale, F.; Tartaglia, P.; Tombesi, P., Z. Phys., B43, 353 (1981)
[24] Dekker, H., Phys. Lett., 88A, 279 (1982)
[25] Haake, F., Phys. Rev. Lett., 41, 1685 (1978)
[26] Matsuo, K.; Lindenberg, K.; Shuler, K. E., J. Stat. Phys., 19, 65 (1978)
[27] Arecchi, F. T.; Politi, A., Phys. Rev. Lett., 45, 1219 (1980)
[28] Schulten, K.; Schulten, Z.; Szabo, A., J. Chem. Phys., 74, 4426 (1981)
[29] Drozdov, A. N.; Zitserman, V. Yu., Phys. Lett., 94A, 17 (1983)
[30] Z. Phys., B26, 281 (1977)
[31] Feynman, R. P., Statistical Mechanics (1972), Benjamin: Benjamin Cambridge, Ma
[32] Storer, R. G., J. Math. Phys., 9, 964 (1968)
[33] Jorish, V. S.; Zitserman, V. Yu., Chem. Phys. Lett., 34, 378 (1975)
[34] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965), McGraw-Hill: McGraw-Hill New York · Zbl 0176.54902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.