×

Principal factors in a pure cubic field and its unramified cyclic cubic extensions. (English) Zbl 0618.12005

Let m be a positive 3rd power free integer and let \(L={\mathbb{Q}}(^ 3\sqrt{m})\). Denote by \(p_ 1,...,p_ t\) the rational primes which are fully ramified in L. A positive integer \(d=p_ 1^{e_ 1}...p_ t^{e_ t}\) is called a principal factor for L if it is not of the form \(m^{f_ 0}\cdot p_ 1^{f_ 1}...p_ t^{f_ t}\) and if the principal ideal of L generated by d is the 3rd power of a principal ideal of L. The author describes conditions in terms of units and genus theory which are equivalent to the existence of a principal factor \(\equiv 1 mod 9\). These are partly analoguous to the real quadratic case.
Reviewer: H.Opolka

MSC:

11R16 Cubic and quartic extensions
11R27 Units and factorization
11R37 Class field theory
Full Text: DOI

References:

[1] Barrucand, P.; Cohn, H., Remarks on principal factors in a relative cubic field, J. Number Theory, 3, 226-239 (1971) · Zbl 0218.12002 · doi:10.1016/0022-314X(71)90040-0
[2] Fröhlich, A., The genus field and genus group in finite number fields II, Mathematika, 6, 142-146 (1969) · Zbl 0202.33005
[3] Gerth, F., On 3-class groups of pure cubic fields, J. reine angew. Math., 278/279, 52-62 (1975) · Zbl 0334.12011
[4] Hasse, H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper (1970), Würzburg/Wien: Physica-Verlag, Würzburg/Wien · JFM 52.0150.19
[5] Iimura, K., On the unit groups of certain sextic number fields, Abh. Math. Sem. Univ. Hamburg, 50, 32-39 (1980) · Zbl 0416.12002 · doi:10.1007/BF02941412
[6] Nakagoshi, N., The structure of the multiplicative group of residue classes modulop^N+1, Nagoya Math. J., 73, 41-60 (1979) · Zbl 0393.12023
[7] Odai, Y., Some unramified cyclic cubic extensions of pure cubic fields, Tokyo J. Math., 7, 391-398 (1984) · Zbl 0576.12005 · doi:10.3836/tjm/1270151734
[8] Scholz, A., Idealklassen und Einheiten in kubischen Körpern, Monatshefte Math. Phys., 40, 211-222 (1933) · Zbl 0007.00301 · doi:10.1007/BF01708865
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.