×

Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe. (A rationality theorem for formal Hecke series related to the Siegel modular group). (German) Zbl 0613.10026

The author proves the rationality of a formal Hecke series related to the Siegel modular group \(\Gamma_ n=Sp(n; {\mathbb{Z}})\). Given a prime number p, one deals with the p-component of the Hecke algebra related to the pair \((\Gamma_ n, Sp(n;{\mathbb{Q}}))\) and the attached isomorphism Q in the sense of E. Freitag [Siegelsche Modulfunktionen (Grundl. Math. Wiss. 254) (1983; Zbl 0498.10016)]. Using purely algebraic methods, it is demonstrated that the identity \[ \sum_{D}Q(\Gamma_ n\left( \begin{matrix} D\\ 0\end{matrix} \begin{matrix} 0\\ D^{-1}\end{matrix} \right)\Gamma_ n)\quad T^{\alpha}=\frac{1-T}{1-p^ nT}\prod^{n}_{i=1}\frac{(1- p^{2i}T^ 2)}{(1-X_ ip^ nT)(1-X_ i^{-1}p^ nT)} \] holds formally in T, where the summation is taken over all elementary divisor matrices D of the form having \(p^{\alpha_ 1},...,p^{\alpha_ n}\), respectively, as diagonal entries with \(0\leq \alpha_ 1\leq...\leq \alpha_ n\); \(\alpha =\sum^{n}_{i=1}\alpha_ i\). This rationality theorem yields several applications: a simple approach to the Andrianov identities [A. N. Andrianov, Math. USSR, Sb. 34, 259-300 (1978); translation from Mat. Sb., Nov. Ser. 105(147), 291-341 (1978; Zbl 0389.10022)], explicit formulas for the action of certain Hecke operators on theta series and a representation of the standard zeta-function related to a Siegel modular form, which is a simultaneous eigenform under all Hecke operators. Moreover the solution of the basis problem for Siegel modular forms given by the author [Math. Z. 183, 21-46 (1983; Zbl 0497.10020), ibid. 189, 81-110 (1985; Zbl 0558.10022)] can be simplified.
Reviewer: A.Krieg

MSC:

11F27 Theta series; Weil representation; theta correspondences
Full Text: DOI

References:

[1] A. N. Andkianov, Spherical functions forGL n over local fields and summation of Hecker series. Math. USSR – Sb. 12, 429–452 (1970). · Zbl 0272.22008 · doi:10.1070/SM1970v012n03ABEH000929
[2] A. N. Andrianov, Euler decompositions of theta-transformations of Siegel modular form of genus n. Math. USSR – Sb. 34, 259–300 (1978). · Zbl 0412.10021 · doi:10.1070/SM1978v034n03ABEH001160
[3] A. N. Andrianov, The multiplicative arithmetic of Siegel modular forms. Russian Math. Surveys 34, 75–148 (1979). · Zbl 0427.10017 · doi:10.1070/RM1979v034n01ABEH002872
[4] A. N. Andrianov undV. L. Kalinin, On the analytic properties of standard zeta functions of Siegel modular forms. Math. USSR – Sb. 35, 1–17 (1979). · Zbl 0417.10024 · doi:10.1070/SM1979v035n01ABEH001443
[5] S. Böcherer, Über die Fourier-Jaeobi-Entwicklung Siegelscher Einsteinreihen. Math. ?. 183, 21–46 (1983).
[6] S. Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Einsteinreihen II. Math. Z. 189, 81–110 (1985). · Zbl 0558.10022 · doi:10.1007/BF01246946
[7] S. Böcherer, Über die Funktionalgleichung automorpherL-Funktionen zur Siegeischen Modulgruppe. J. reine angew. Math. 362, 146–168 (1985) · Zbl 0565.10025 · doi:10.1515/crll.1985.362.146
[8] E. Freitag, Siegeische Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254. Berlin–Heidelberg–New York: Springer 1983.
[9] P. B. Garrett, Pullbacks of Einstein series; Applications. In: Automorphie forms of several variables Taniguchi symposium 1983. Boston–Basel–Stuttgart: Birkhäuser 1984.
[10] Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms. Nagoya Math. J. 95, 73–84 (1984). · Zbl 0551.10025
[11] R. P. Langlands, Euler products. New Haven–London: Yale University Press 1971. · Zbl 0231.20017
[12] O. T. O’Meara, Introduction to quadratic forms. Grundlehren der mathematischen Wissenschaften 117. Berlin–Heidelberg–New York: Springer 1963.
[13] I. Piatetski-Shapiro undS. Rallis,L-functions of automorphie forms on simple classical groups. Erscheint in Proc. of Durham Symposium on modular forms 1983.
[14] I. Satake, Theory of spherical functions on reductive algebraic groups overp-adic fields. Publ. Math. IHES 18, 5–69 (1963).
[15] G. Shimura, On modular correspondances for Sp (n, \(\mathbb{Z}\)) and their congruence relations. Proc. Nat. Acad. Sci. 49, 824–828 (1963). · Zbl 0122.08803 · doi:10.1073/pnas.49.6.824
[16] L. Siegel, Über die analytische Theorie der quadratischen Formen. Annals of Math. 36, 527–606 (1935) (= Gesammelte Abhandlungen Nr. 20). · JFM 61.0140.01 · doi:10.2307/1968644
[17] N. A. Zharkovskaya, The Siegel operator and Hecke operators. Functional analysis and its applications 8, 113–120 (1974). · Zbl 0314.10021 · doi:10.1007/BF01078595
[18] A. Krieg, Das Vertauschungsgesetz zwischen Heckeoperatoren und dem Siegel-schen {\(\Phi\)}-Operator. Preprint Münster 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.