×

On the stability of pipe-Poiseuille flow to finite-amplitude axisymmetric and non-axisymmetric disturbances. (English) Zbl 0579.76054

Summary: The stability of fully developed pipe-Poiseuille flow to finite-amplitude axisymmetric disturbance and non-axisymmetric disturbances has been studied using the equilibrium-amplitude method of W. C. Reynolds and M. C. Potter [ibid. 27, 465-492 (1967; Zbl 0166.461)]. In both the cases the least-stable centre modes were investigated. Also, for the non-axisymmetric case the mode investigated was the one with azimuthal wavenumber equal to one. Many higher-order Landau coefficients were calculated, and the Stuart-Landau series was analysed by the D. Shanks method [J. Math. Phys. 34, 1-42 (1955; Zbl 0067.286)] and by using Padé approximants to look for the existence of possible equilibrium states. The results show in both cases that, for each value of the Reynolds number R, there is a preferred band of spatial wavenumbers \(\alpha\) in which equilibrium states are likely to exist. Moreover, in both cases it was found that the magnitude of the minimum threshold amplitude for a given R decreases with increasing R. The scales of the various quantities obtained agree very well with those deduced by A. Davey and H. P. F. Nguyen [J. Fluid Mech. 45, 701-720 (1971; Zbl 0245.76038)].

MSC:

76E30 Nonlinear effects in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Zhou, Proc. R. Soc. Lond. 381 pp 407– (1982)
[2] DOI: 10.1017/S0022112077000780 · Zbl 0362.76091 · doi:10.1017/S0022112077000780
[3] DOI: 10.1017/S0022112077000779 · Zbl 0362.76090 · doi:10.1017/S0022112077000779
[4] DOI: 10.1017/S0022112072000564 · Zbl 0236.76038 · doi:10.1017/S0022112072000564
[5] DOI: 10.1063/1.1691740 · doi:10.1063/1.1691740
[6] DOI: 10.1017/S0022112071000284 · Zbl 0245.76038 · doi:10.1017/S0022112071000284
[7] DOI: 10.1017/S0022112069001613 · Zbl 0184.53202 · doi:10.1017/S0022112069001613
[8] DOI: 10.1017/S0022112078001342 · Zbl 0379.76040 · doi:10.1017/S0022112078001342
[9] DOI: 10.1017/S0022112062001421 · Zbl 0118.21102 · doi:10.1017/S0022112062001421
[10] DOI: 10.1017/S0022112060001171 · Zbl 0096.21103 · doi:10.1017/S0022112060001171
[11] Van Dyke, Q. J. Mech. Appl. Maths 27 pp 423– (1974)
[12] DOI: 10.1103/PhysRev.91.780 · Zbl 0051.17303 · doi:10.1103/PhysRev.91.780
[13] DOI: 10.1017/S002211206000116X · Zbl 0096.21102 · doi:10.1017/S002211206000116X
[14] Shanks, J. Maths and Phys. 34 pp 1– (1955) · doi:10.1002/sapm19553411
[15] Sen, J. Fluid Mech. 133 pp 179– (1983)
[16] DOI: 10.1017/S0022112075000845 · doi:10.1017/S0022112075000845
[17] DOI: 10.1017/S0022112072000552 · Zbl 0236.76037 · doi:10.1017/S0022112072000552
[18] DOI: 10.1017/S0022112067000485 · Zbl 0166.46102 · doi:10.1017/S0022112067000485
[19] DOI: 10.1017/S0022112059000076 · Zbl 0083.41001 · doi:10.1017/S0022112059000076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.