×

Borel summability beyond the factorial growth. (English) Zbl 0551.40009

This paper provides a criterion of the Watson-Nevanlinna type for the ”logarithmic Borel summability”, by which a formal power series \(\sum a_ kz^ k\) admits a ”logarithmic Borel sum” g(z) if (a) \(B(t)=(\alpha /\pi)^{1/2}\sum^{\infty}_{k=0}a_ ke^{-k^ 2/4\alpha}t^ k\) converges for small t; (b) it has an analytic continuation to some neighborhood of \({\mathbb{R}}_+\); (c) \(g(z)=\int^{\infty}_{0}\exp (- (\log (t/z))^ 2)B(t)t^{-1}dt\) is an absolutely convergent integral for some \(z\neq 0\). Explicitly, let f(z) be analytic on the Riemann surface of log z for \(-\infty <Re(\log z)<c_ 0\) (c\(\in {\mathbb{R}})\) and let it satisfy the estimate \[ (1)\quad | R_ N(z)| \equiv | f(z)-\sum^{N-1}_{k=0}a_ kz^ k| \leq A\delta^ Ne^{N^ 2/4\alpha}| z|^ N\exp (\alpha \theta^ 2-2\alpha \phi_ 0| \theta |) \] for constants A, \(\delta\), \(\alpha\), \(\phi_ 0\) independent of \(| z|\), of \(\theta =\arg (z)\) and of \(N\in {\mathbb{N}}\). Then the series (a), which is convergent for small t, defines a function B(t) analytic in \(S(\delta,\phi_ 0)=\{t/| t| <\delta^{-1}\) or \(| \arg (t)| <\phi_ 0\}\) such that \[ (2)\quad | B^{(N)}(t)| \leq \]
\[ \leq A^ N_ 1e^{\alpha (\log t)^ 2}e^{-2\alpha c(\log t)}t^{-N}\sum^{N}_{r=0}\left( \begin{matrix} N\\ r\end{matrix} \right)(N-r)!\sum^{r}_{j=0}r!(j!)^{-1}| \log t|^ j \] for \(t>0\), for any fixed c \((-\infty,c_ 0)\). Besides, f(z) admits the integral representation (c) for \(-\infty <Re(\log z)<c_ 0\). Conversely, if B(t) is analytic in \(S(\delta,\phi_ 0)\) and satisfies (2), then the integral (c) defines a function f(z) analytic for \(-\infty <Re(\log z)<c_ 0\), satisfying an estimate of the type (1).
The applicability to the eigenvalues E(z) of the exponential anharmonic oscillator \(H(z)=p^ 2+x^ 2+z e^ x\) is conjectured: in fact it is proved that each E(z) satisfies analyticity and remainder estimates of the type (1) in any fixed angular sector of the Riemann surface of log z, for small \(| z|\). On the other hand, the first approximant by the Trotter formula of \(Tr(e^{-tH(z)})\), that is \((2\pi t)^{- 1/2}\int^{+\infty}_{-\infty}e^{-t(x^ 2+ze^ x)}dx\), has logarithmically Borel summable expansion in powers of z.
The authors have also proved a criterion for a ”generalized logarithmic Borel summability” [J. Math. Phys. 25, 3439-3443 (1984)] for power series with divergence of the type \(| a_ k| \sim (pk)!\exp (\alpha k^ 2/4)\) as \(k\to \infty\), \(p\in {\mathbb{N}}\).

MSC:

40G10 Abel, Borel and power series methods
30B99 Series expansions of functions of one complex variable
81Q15 Perturbation theories for operators and differential equations in quantum theory

References:

[1] S. Albeverio and R. Hoegh-Krohn , J. Funct. Anal. , t. 16 , 1974 , p. 39 . Zbl 0279.60095 · Zbl 0279.60095 · doi:10.1016/0022-1236(74)90070-6
[2] G. Doetsch , Introduction to the Theory and Application of the Laplace Transforma- tion , Springer-Verlag , 1974 . MR 344810 | Zbl 0278.44001 · Zbl 0278.44001
[3] A.D. Doglov and V.S. Popov , Phys. Lett. , t. 79 B, 1978 , p. 403 .
[4] B.V. Gnedenko , Yu.K. Belyayev and A.D. Solovyev , Méthodes Mathématiques en Théorie de la Fiabilité , Éditions MIR , 1972 . MR 353489 | Zbl 0244.62006 · Zbl 0244.62006
[5] I.S. Gradshteyn and I.M. Ryzhik , Table of Integrals, Series and Products , Academic Press , 1980 . · Zbl 0521.33001
[6] G.H. Hardy , Divergent Series , Clarendon Press , Oxford , 1949 . MR 30620 | Zbl 0032.05801 · Zbl 0032.05801
[7] I. Herbst , Comm. Math. Phys. , t. 64 , 1979 , p. 279 . Article | MR 520094 | Zbl 0447.47028 · Zbl 0447.47028 · doi:10.1007/BF01221735
[8] R. Høegh-Krohn , Comm. Math. Phys. , t. 21 , 1971 , p. 244 . MR 292433
[9] G. ’t Hooft , private communication via B. Simon .
[10] M. Maioli , J. Math. Phys. , t. 22 , 1981 , p. 1952 . MR 631146 | Zbl 0472.47025 · Zbl 0472.47025 · doi:10.1063/1.525141
[11] F. Nevanlinna , Ann. Acad. Sci. Fennicae , Ser. A , t. 12 , n^\circ 3 , 1918 - 1919 .
[12] M. Reed and B. Simon , Methods of Modern Mathematical Physics , vol. IV , Academic Press , 1978 . Zbl 0401.47001 · Zbl 0401.47001
[13] J.A. Shohat and J.D. Tamarkin , The Problem of Moments , A. M. S ., New York , 1943 . MR 8438 | Zbl 0063.06973 · Zbl 0063.06973
[14] B. Simon , Functional Integration and Quantum Physics , Academic Press , 1979 . MR 544188 | Zbl 0434.28013 · Zbl 0434.28013
[15] A.D. Sokal , J. Math. Phys. , t. 21 , 1980 , p. 261 . MR 558468 | Zbl 0441.40012 · Zbl 0441.40012 · doi:10.1063/1.524408
[16] T.J. Stieltjes , Annales de la Faculté des Sciences de Toulouse , ( 1 ), t. 8 , 1894 , T, p. 1 - 122 , ( 1 ), t. 9 , 1895 , A, p. 5 - 47 . Numdam | JFM 25.0326.01 · JFM 25.0326.01
[17] G.N. Watson , Phil. Trans. Roy. Soc. London , Ser. A , t. 211 , 1912 , p. 279 . JFM 42.0273.01 · JFM 42.0273.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.