×

Projective limits of group rings. (English) Zbl 0786.20002

It may happen that a finite group \(G\) turns out to be the projective limit of certain quotient groups \(G_ j\). For example, if \(G\) is solvable, then \(G\) is such a limit in a canonical way. The corresponding projective limit \(\Gamma G\) of the integral group rings \(\mathbb{Z} G_ j\) is a quotient of \(\mathbb{Z} G\), and it seems quite natural to ask which consequences equalities \(\mathbb{Z} G = \mathbb{Z} H\), \(\Gamma G = \Gamma H\) for two solvable groups \(G\), \(H\) would have. This is discussed with respect to the isomorphism problem and certain variations of the Zassenhaus conjecture. It is shown that a Čech style cohomology set yields obstructions for these conjectures to be true.
Some of the results are: 1. If \(\mathbb{Z} G = \mathbb{Z} H\), and if the augmentation ideal of \(\mathbb{Z} G\) decomposes, then \(G\simeq H\). K. W. Gruenberg and K. W. Roggenkamp have given a list of all solvable groups \(G\) whose augmentation ideals decompose [Proc. Lond. Math. Soc., III. Ser. 31, 149-166 (1975; Zbl 0313.20004), J. Pure Appl. Algebra 6, 165-176 (1975; Zbl 0313.20003), J. Lond. Math. Soc., II. Ser. 12, 262-266 (1976; Zbl 0325.20015)]. 2. If \(G\) modulo its Fitting subgroup is abelian, then the \(p\)-version of the Zassenhaus conjecture holds simultaneously for all primes \(p\) for \(\Gamma G\) and for \(\mathbb{Z} G\). 3. If \(G\) is a Frobenius group, then the \(p\)-version of the Zassenhaus conjecture holds true. 4. There are two non-isomorphic groups \(G\), \(H\) such that the \(\Gamma G\) and \(\Gamma H\) are semi-locally isomorphic.

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
16U60 Units, groups of units (associative rings and algebras)
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
Full Text: DOI

References:

[1] Gruenberg, K. W.; Roggenkamp, K. W., Decomposition of the augmentation ideal and of the relation modules of a finite group, Proc. London Math. Soc., 31, 149-166 (1975) · Zbl 0313.20004
[2] Gruenberg, K. W.; Roggenkamp, K. W., Projective covers for augmentation ideals of finite groups, J. Pure Appl. Algebra, 6, 165-176 (1975) · Zbl 0313.20003
[3] Gruenberg, K. W.; Roggenkamp, K. W., Decomposition of the relation modules of a finite group, J. London Math. Soc., 12, 2, 262-266 (1976) · Zbl 0325.20015
[4] Huppert, B., Endliche Gruppen I, (Grundlehren der Mathematischen Wissenschaften, Vol. 134 (1967), Springer: Springer Berlin) · Zbl 0217.07201
[5] Kimmerle, W., Beiträge zur ganzzahligen Darstellungstheorie endlicher Gruppen, Bayreuth. Math. Schr., 36, 1-139 (1991) · Zbl 0728.20005
[6] Kimmerle, W.; Roggenkamp, K. W.; Taylor, M. J., Class sums of \(p\)-elements, Group Rings and Class Groups DMV-Seminar, 18, 117-124 (1992)
[7] Roggenkamp, K. W., Observations to a conjecture of H. Zassenhaus, Groups. (London Mathematical Society Lecture Note Series, Vol. 160 (1991), Cambridge University Press: Cambridge University Press Cambridge), Vol. 2, 427-444 (1989), St. Andrews · Zbl 0745.20005
[8] Roggenkamp, K. W., Čech cohomology of finite groups and group rings (1992), Manuscript
[9] Roggenkamp, K. W.; Scott, L. L., Isomorphisms of \(p\)-adic group rings, Ann. of Math., 126, 593-647 (1987) · Zbl 0633.20003
[10] Roggenkamp, K. W.; Scott, L. L., On a conjecture of Zassenhaus (1987), Manuscript
[11] Roggenkamp, K. W.; Taylor, M., Group rings and class groups, (DMV-Seminar, 18 (1992), Birkhäuser: Birkhäuser Basel) · Zbl 0742.00085
[12] Scott, L. L., Recent progress on the isomorphism problem, Proc. Sympos. Pure Math., 47, 259-274 (1987) · Zbl 0657.20003
[13] Scott, L. L., Defect groups and the isomorphism problem, (Representations linéaires des groupes finis. Representations linéaires des groupes finis, France (1988). Representations linéaires des groupes finis. Representations linéaires des groupes finis, France (1988), Proc. Colloq. Luminy (1990), Astérisque), 181-182 · Zbl 0727.20002
[14] Swan, R., Induced representations and induced modules, Ann. of Math., 71, 552-578 (1960) · Zbl 0104.25102
[15] Zimmermann, A., Das Isomorphieproblem ganzzahliger Gruppenringe für Gruppen mit abelschem Normalteiler und Quotienten, der eine Vermutung von Hans Zassenhaus erfüllt, (Diplomarbeit (1990), Universität Stuttgart)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.