×

The Hausdorff distance between compact convex sets. (English) Zbl 0556.52006

Let \({\mathcal K}^ n\) be the family of all convex bodies in \(R^ n\) (endowed with the Hausdorff distance \(\rho)\). For \(K\in {\mathcal K}^ n\), let w(K) be the intrinsic width and s(K) the Steiner point of K. Set \({\mathcal K}^ n_*=\{K\in {\mathcal K}^ n: w(K)=2,\quad s(K)=0\}.\) Then \(K\subset B\) for each K in \({\mathcal K}^ n_*\) (B is the unit ball in \(R^ n)\) and \(diam {\mathcal K}^ n_*=1.\) Hence, for \(K_ 0\), \(K_ 1\) in \({\mathcal K}^ n\), we have \(\rho (K_ 0,K_ 1)\leq \max \{w(K_ 0),w(K_ 1)\}+\| s(K_ 0)-s(K_ 1)\|.\)
Reviewer: J.Danes

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
Full Text: DOI

References:

[1] DOI: 10.1112/jlms/s2-9.2.363 · Zbl 0294.52004 · doi:10.1112/jlms/s2-9.2.363
[2] Posicel’skiĭ, Mat. Zametki 14 pp 243– (1973)
[3] DOI: 10.1017/S0305004100051665 · Zbl 0313.52005 · doi:10.1017/S0305004100051665
[4] DOI: 10.1007/BF02771589 · Zbl 0208.50402 · doi:10.1007/BF02771589
[5] Gruber, Contributions to Geometry pp 255– (1979) · doi:10.1007/978-3-0348-5765-9_11
[6] Bonnesen, Theorie der konvexen Körper (1934) · doi:10.1007/978-3-642-47404-0
[7] Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (1957) · doi:10.1007/978-3-642-94702-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.