×

Quantum line bundles on \(S^ 2\) and method of orbits for \(SU_ q(2)\). (English) Zbl 0782.17010

The aim of this paper is to construct representations of the quantum group \(SU_ q(2)\) for \(q\in(0,1)\) using an analog of the orbit method (geometric quantization). First the author studies the relations between functions on \(SU_ q(2)\), the deformed universal enveloping algebra of \({\mathfrak {sl}}(2,\mathbb{C})\) and functions on \(AN_ q\), where \(AN\) denotes the solvable part in the Iwasawa decomposition of \(SL(2,\mathbb{C})\). Next he discusses quantum dressing orbits, which turn out to be quantum two- spheres and constructs the quantum analog of the cover of a two-sphere by two planes. Using this covering he constructs line bundles over the quantum sphere and via an analog of the classical reduction using a polarization he arrives at irreducible representations on spaces of “holomorphic sections” of these bundles. Finally the classical limit of these constructions and possible generalizations are discussed.
Reviewer: A.Cap (Wien)

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
46L85 Noncommutative topology
46L87 Noncommutative differential geometry
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI

References:

[1] DOI: 10.1007/BF00704588 · Zbl 0587.17004 · doi:10.1007/BF00704588
[2] DOI: 10.1007/BF01218386 · Zbl 0651.17008 · doi:10.1007/BF01218386
[3] DOI: 10.1016/0001-8708(88)90056-4 · Zbl 0651.17007 · doi:10.1016/0001-8708(88)90056-4
[4] DOI: 10.1007/BF00416848 · Zbl 0634.46054 · doi:10.1007/BF00416848
[5] DOI: 10.1007/BF00414635 · Zbl 0735.17024 · doi:10.1007/BF00414635
[6] DOI: 10.1007/BF02473358 · Zbl 0703.22018 · doi:10.1007/BF02473358
[7] DOI: 10.1016/0393-0440(88)90018-6 · Zbl 0711.17008 · doi:10.1016/0393-0440(88)90018-6
[8] Lu K. H., J. Diff. Geom. 31 pp 501– (1990)
[9] DOI: 10.1007/BF01589667 · doi:10.1007/BF01589667
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.