×

Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. (English) Zbl 1110.65116

Authors’ summary: Based on the multi-symplecticity of the Schrödinger equations with variable coefficients, we give a multi-symplectic numerical scheme, and investigate some conservative properties and error estimation of it. We show that the scheme satisfies discrete normal conservation law corresponding to one possessed by the original equation, and propose global energy transit formulae in temporal direction. We also discuss some discrete properties corresponding to energy conservation laws of the original equations.
In numerical experiments, comparisons with the modified Goldberg scheme and Modified Crank-Nicolson scheme are given to illustrate some properties of the multi-symplectic scheme in the numerical implementation, and the global energy transit is monitored due to the scheme does not preserve energy conservation law. Our numerical experiments show the match between theoretical and corresponding numerical results.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
35Q55 NLS equations (nonlinear Schrödinger equations)
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ablowitz, M. J.; Schober, C. M., Hamiltonian integrators for the nonlinear Schrödinger equation, Internat. J. Modern Phys. C, 5, 397-401 (1994) · Zbl 0940.65518
[2] Blanes, S.; Moan, P. C., Splitting methods for the time-dependent Schrödinger equation, Phys. Lett. A, 265, 35-42 (2000) · Zbl 0941.81025
[3] Bourgain, J., Global Solutions of Nonlinear Schrödinger Equations, Amer. Math. Soc. Colloq. Publ., vol. 46 (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0933.35178
[4] Bridges, T. J., Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121, 147-190 (1997) · Zbl 0892.35123
[5] Bridges, T. J.; Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284, 4-5, 184-193 (2001) · Zbl 0984.37104
[6] Budd, C. J.; Piggott, M. D., Geometric integration and its application, (Handbook Numer. Anal., vol. XI (2003), North-Holland: North-Holland Amsterdam), 35-139 · Zbl 1062.65134
[7] J. Chen, M-Z. Qin, Multi-symplectic geometry and multisymplectic integrators for the nonlinear Schrödinger equation, Preprint, 2000; J. Chen, M-Z. Qin, Multi-symplectic geometry and multisymplectic integrators for the nonlinear Schrödinger equation, Preprint, 2000
[8] Chen, J., New schemes for the nonlinear Schrödinger equation, Appl. Math. Comput., 124, 371-379 (2001) · Zbl 1023.65130
[9] Delfour, M.; Fortin, M.; Payre, G., Finite-difference solutions of a non-linear Schrödinger equation, J. Comput. Phys., 44, 277-288 (1981) · Zbl 0477.65086
[10] Feng, K., Collected Works of Feng Kang II (1995), National Defence Industry Press: National Defence Industry Press Beijing
[11] Galbraith, I.; Ching, Y. S.; Abraham, E., Two-dimensional time-dependent quantum-mechanical scattering event, Amer. J. Phys., 52, 1, 60-68 (1984)
[12] Gray, S. K.; Manolopoulos, D. E., Symplectic integrators tailored to the time-dependent Schrödinger equation, J. Chem. Phys., 104, 18, 7099-7112 (1996)
[13] Goldberg, A.; Schey, H. M., Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, Amer. J. Phys., 35, 3, 177-186 (1967)
[14] Herbst, B. M.; Morris, J.; Mitchell, A. R., Numerical experiment with the nonlinear Schrödinger equation, J. Comput. Phys., 60, 282-305 (1985) · Zbl 0589.65084
[15] Herbst, B. M.; Varadi, F.; Ablowitz, M. J., Symplectic methods for the nonlinear Schrödinger equation, Math. Comput. Simulation, 37, 353-369 (1994) · Zbl 0812.65118
[16] Hong, J.; Liu, Y., Multi-symplecticity of the centred box discretizations for a class of Hamiltonian PDE’s and an application to quasi-periodically solitary wave of qpKdV equation, Math. Comput. Model., 39, 1035-1047 (2004) · Zbl 1062.35115
[17] Hong, J.; Liu, Y., A novel numerical approach to simulating nonlinear Schrödinger equation with varying coefficients, Appl. Math. Lett., 16, 759-765 (2003) · Zbl 1046.65072
[18] Hong, J.; Qin, M.-Z., Multi-symplecticity of the centred box discretizations for Hamiltonian PDE’s with \(m \geqslant 2\) space dimensions, Appl. Math. Lett., 15, 1005-1011 (2002) · Zbl 1009.37051
[19] Hu, X.-G., Laguerre Scheme: Another member for propagating the time-dependent Schrödinger equation, Phys. Rev. E, 59, 2, 2471-2474 (1999)
[20] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (1996), Cambridge University Press: Cambridge University Press Cambridge
[21] Islas, A. L.; Karpeev, D. A.; Schober, C. M., Geometric integrations for the nonlinear Schrödinger equation, J. Comput. Phys., 173, 116-148 (2001) · Zbl 0989.65102
[22] Jiménez, S.; Vázquez, L., Some remarks on conservative and symplectic schemes, (Nonlinear Problems in Future Particle Accelerators, Proceedings (1991), World Scientific: World Scientific Singapore), 151-162
[23] Jiménez, S., Derivation of the discrete conservation laws for a family of finite difference schemes, Appl. Math. Comput., 64, 13-45 (1994) · Zbl 0806.65081
[24] Karpeer, D. A.; Schober, C. M., Symplectic integrators for discrete nonlinear Schrödinger systems, Math. Comput. Simulation, 56, 145-156 (2001) · Zbl 0985.65157
[25] Korsch, H. J.; Wiescher, H., Quantum chaos, (Hoffmann, K. H.; Schreiber, M., Computational Physics (1996), Springer: Springer Berlin), 225-244 · Zbl 0857.65135
[26] Landau, L. D.; Lifshitz, M. E., Quantum Mechanics, Non-Relativistic Theory (1977), Pergamon: Pergamon London · Zbl 0178.57901
[27] Lee, T. D., Difference equations and conservation laws, J. Statist. Phys., 46, 5/6, 843-860 (1987)
[28] Li, S.; Vu-Quoc, L., Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 6, 1839-1875 (1995) · Zbl 0847.65062
[29] Marsden, J. E.; Patrick, G. P.; Shkoller, S., Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199, 351-395 (1998) · Zbl 0951.70002
[30] Marsden, J. E.; Pekarsky, S.; Shkoller, S.; West, M., Variational methods, multisymplectic geometry and continuum mechanics, J. Geom. Phys., 38, 253-284 (2001) · Zbl 1007.74018
[31] Marsden, J. E.; Shkoller, S., Multisymplectic geometry, covariant Hamiltonians and water waves, Math. Proc. Cambridge Philos. Soc., 125, 553-575 (1999) · Zbl 0922.58029
[32] McLachlan, R. I.; Gray, S. K., Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation, Appl. Numer. Math., 25, 275-286 (1997) · Zbl 0888.65095
[33] Neal, R. M., An improved acceptance procedure for the hybrid Monte Carlo algorithm, J. Comput. Phys., 111, 194-203 (1994) · Zbl 0797.65115
[34] Puzyin, I. V.; Selin, A. V.; Vinitsky, S. I., A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation, Comput. Phys. Comm., 123, 1-6 (1999) · Zbl 0941.65080
[35] Puzyin, I. V.; Selin, A. V.; Vinitsky, S. I., Magnus-factorized method for numerical solving the time-dependent Schrödinger equation, Comput. Phys. Comm., 126, 158-161 (2000) · Zbl 0962.65103
[36] Ramos, J. I., Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media, Appl. Math. Comput., 133, 1-28 (2002) · Zbl 1024.65083
[37] Reich, S., Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations, J. Comput. Phys., 157, 473-499 (2000) · Zbl 0946.65132
[38] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems (1994), Chapman and Hall: Chapman and Hall London · Zbl 0816.65042
[39] Sanz-Serna, J. M.; Verwer, J. G., Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal., 6, 25-42 (1986) · Zbl 0593.65087
[40] Sanz-Serna, J. M., Methods for numerical solution of the nonlinear Schrödinger equation, Math. Comp., 43, 21-27 (1984) · Zbl 0555.65061
[41] Sanz-Serna, J. M.; Manoranjan, V. S., A method for the integration in time of certain partial differential equations, J. Comput. Phys., 52, 273-289 (1983) · Zbl 0514.65085
[42] Schober, C. M., Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation, Phys. Lett. A, 259, 140-151 (1999) · Zbl 0935.37053
[43] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85, 21, 4502-4505 (2000)
[44] Sulem, C.; Sulem, P.-L., The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse (1999), Springer: Springer New York · Zbl 0928.35157
[45] Zhang, F.; Pérez-García, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.