×

Polaroid operators satisfying Weyl’s theorem. (English) Zbl 1096.47039

Let \(T\) be a continuous linear operator on a given Banach space \(X\). \(T\) is said to be polaroid if every isolated point in the spectrum \(\sigma(T)\) of \(T\) is a pole of the resolvent set of \(T\). \(T\) satisfies Weyl’s theorem if \(\sigma(T)\setminus\sigma_w(T)\) consists of the isolated points of \(\lambda\in\sigma(T)\) with \(0<\dim(T-\lambda)^{-1}(0)<\infty\), where \(\sigma_w(T)\) stands for the Weyl spectrum of \(T\).
The author gives characterizations of when the operator \(T\) is polaroid and satisfies Weyl’s theorem. As a matter of fact, he proves that \(T\) has the above-mentioned properties if and only if \(T\) has the single-valued extension property at every point not in \(\sigma_w(T)\) and is of Kato type at every isolated point of \(\sigma(T)\).

MSC:

47B47 Commutators, derivations, elementary operators, etc.
47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
Full Text: DOI

References:

[1] Aiena, P., Fredholm and local spectral theory with applications to multipliers (2004), Kluwer · Zbl 1077.47001
[2] Aiena, P.; Monsalve, O., The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged), 67, 461-477 (2001)
[3] Berkani, M., Index of \(B\)-Fredholm operators and a generalization of a Weyl theorem, Proc. Am. Math. Soc., 130, 1717-1723 (2002) · Zbl 0996.47015
[4] Cao, X., Weyl’s theorem for analytically hyponormal operators, Linear Algebra Appl., 405, 229-238 (2005) · Zbl 1088.47010
[5] M. Chō, Y.M. Han, Riesz idempotent and algebraically \(M\); M. Chō, Y.M. Han, Riesz idempotent and algebraically \(M\)
[6] Curto, R. E.; Han, Y. M., Weyl’s theorem for algebraically paranormal operators, Integral Equations Operator Theory, 47, 307-314 (2003) · Zbl 1054.47018
[7] Duggal, B. P., Weyl’s theorem for a generalized derivation and an elementary operator, Math. Vesnik, 54, 71-81 (2002) · Zbl 1093.47509
[8] Duggal, B. P., Weyl’s theorem for totally hereditarily normaloid operator, Rend. Circolo Mat. Palermo, LIII, 417-428 (2004) · Zbl 1096.47038
[9] B.P. Duggal, Hereditarily normaloid operators, Extracta Math., in press.; B.P. Duggal, Hereditarily normaloid operators, Extracta Math., in press. · Zbl 1097.47005
[10] Duggal, B. P.; Harte, R. E.; Jeon, I. H., Polaroid operators and Weyl’s theorem, Proc. Am. Math. Soc., 132, 1345-1349 (2004) · Zbl 1062.47004
[11] Furuta, T., Invitation to Linear Operators (2001), Taylor and Francis: Taylor and Francis London · Zbl 1029.47001
[12] Han, Y. M.; Kim, A.-H., A note on ∗-paranormal operators, Integral Equations Operator Theory, 49, 435-444 (2004) · Zbl 1097.47022
[13] Y.M. Han, J.I. Lee, D. Wang, Riesz idempotents and Weyl’s theorem for \(w\); Y.M. Han, J.I. Lee, D. Wang, Riesz idempotents and Weyl’s theorem for \(w\)
[14] Harte, R. E.; Lee, W. Y., Another note on Weyl’s theorem, Trans. Am. Math. Soc., 349, 2115-2124 (1997) · Zbl 0873.47001
[15] Heuser, H. G., Functional Analysis (1982), John Wiley and Sons · Zbl 0465.47001
[16] Kato, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Math. Anal., 6, 261-322 (1958) · Zbl 0090.09003
[17] Laursen, K. B.; Neumann, M. N., Introduction to Local Spectral Theory (2000), Clarendon Press: Clarendon Press Oxford · Zbl 0957.47004
[18] Mbekhta, M., Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J., 29, 159-175 (1987) · Zbl 0657.47038
[19] Oudghiri, M., Weyl’s and Browder’s theorem for operators satisfying the SVEP, Stud. Math., 163, 85-101 (2004) · Zbl 1064.47004
[20] Schmoeger, C., On operators \(T\) such that Weyl’s theorem holds for \(f(T)\), Extracta Math., 13, 27-33 (1998) · Zbl 0977.47003
[21] Taylor, A. E.; Lay, D. C., Introduction to Functional Analysis (1980), John Wiley and Sons: John Wiley and Sons New York · Zbl 0501.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.