×

On optimal improvements of classical iterative schemes for \(Z\)-matrices. (English) Zbl 1089.65026

The authors describe a preconditioning technique for improving the asymptotic convergence rate of Jacobi and Gauss-Seidel iterations for irreducible dominant \(Z\)- matrices. Their method is based on a multiple elimination of some off-diagonal entries. Some connections with Krylov subspace methods are also described.

MSC:

65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
Full Text: DOI

References:

[1] M. Alanelli, Block elementary block elimination preconditioners for the numerical solution of non-singular and singular linear systems, Master Dissertation (in Greek), Department of Mathematics, University of Crete, Heraklion, Greece, 2001.; M. Alanelli, Block elementary block elimination preconditioners for the numerical solution of non-singular and singular linear systems, Master Dissertation (in Greek), Department of Mathematics, University of Crete, Heraklion, Greece, 2001.
[2] Alanelli, M.; Hadjidimos, A., Block gauss elimination followed by a classical iterative method for the solution of linear systems, JCAM, 163, 381-400 (2004) · Zbl 1041.65032
[3] Axelsson, O.; Lindskog, G., On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48, 499-523 (1986) · Zbl 0564.65017
[4] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics (1994), SIAM: SIAM Philadelphia · Zbl 0815.15016
[5] Funderlic, R. E.; Plemmons, R. J., LU decomposition of M-matrices by elimination without pivoting, LAA, 41, 99-110 (1981) · Zbl 0473.65011
[6] Gunawardena, A. D.; Jain, S. K.; Snyder, L., Modified iterative methods for consistent linear systems, LAA, 154-156, 123-143 (1991) · Zbl 0731.65016
[7] Horn, R. A.; Jonson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press: Cambridge University Press Cambridge, (Also: second ed. Revised and Expanded, Springer, Berlin, 2000.) · Zbl 0729.15001
[8] Hadjidimos, A.; Noutsos, D.; Tzoumas, M., More on modifications and improvements of classical iterative schemes for Z-matrices, LAA, 364, 253-279 (2003) · Zbl 1023.65022
[9] Juncosa, M. L.; Mulliken, T. W., On the increase of convergence rates of relaxation procedures for elliptic partial differential equations, J. Assoc. Comput. Math., 7, 29-36 (1960) · Zbl 0098.31502
[10] Kohno, T.; Kotakemori, H.; Niki, H.; Usui, M., Improving the Gauss-Seidel Method for Z-Matrices, LAA, 267, 113-123 (1997) · Zbl 0886.65030
[11] Kotakemori, H.; Harada, K.; Morimoto, M.; Niki, H., A comparison theorem for the iterative method with the preconditioner (I+Smax), JCAM, 145, 373-378 (2002) · Zbl 1003.65029
[12] Li, W., Comparison results for solving preconditioned linear systems, JCAM, 176, 319-329 (2005) · Zbl 1067.65047
[13] Li, W.; Sun, W., Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, LAA, 317, 227-240 (2000) · Zbl 0966.65032
[14] Marek, I.; Szyld, D. B., Comparison theorems for weak splittings of bounded operators, Numer. Math., 58, 387-397 (1990) · Zbl 0694.65023
[15] Milaszewicz, J. P., On modified Jacobi linear operators, LAA, 51, 127-136 (1983) · Zbl 0506.65014
[16] Milaszewicz, J. P., Improving Jacobi and Gauss-Seidel iterations, LAA, 93, 161-170 (1987) · Zbl 0628.65022
[17] Niki, H.; Harada, K.; Morimoto, M.; Sakakihara, M., The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method, JCAM, 164-165, 587-600 (2004) · Zbl 1057.65022
[18] Varga, R. S., Matrix Iterative Analysis (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ, (Also: second ed., Revised and Expanded, Springer, Berlin, 2000.) · Zbl 0133.08602
[19] Woźnicki, Z., Nonnegative splitting theory, Jap. J. Ind. Appl. Math., 11, 289-342 (1994) · Zbl 0805.65033
[20] Young, D. M., Iterative Solution of Large Linear Systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.