×

\(K\)-theory for conical isolated singularities. (\(K\)-théorie pour les singularités coniques isolées). (French) Zbl 1094.55007

Let \(X\) be a compact and path-connected topological space, and let \( A=\left\{ a_{i}\in X| i\in \mathcal{I}\right\} \) be a collection of isolated points in such a way that \(X-A\) is an open \(C^{\infty }\)-manifold. We say that \(X\) is a manifold with isolated conical singularities if each \(a_{i}\in A\) has a neighbourhood \(V_{i}\) such that for a given compact smooth manifold \( L_{i}\) there is a homeomorphism \(\varphi _{i}:V_{i}\rightarrow \left( \left[ 0,\varepsilon _{i}\right) \times L_{i}\right) /\left( \left\{ 0\right\} \times L_{i}\right) \) that induces a diffeomorphism \(\left( V_{i}-\left\{ a_{i}\right\} \right) \rightarrow \left( 0,\varepsilon _{i}\right) \times L_{i}\). We write \(\widetilde{X}\) for the manifold obtained from \(X\) by deleting the conical neighbourhoods and glueing the cylinders \(\left[ 0,\varepsilon _{i}\right) \times L_{i}\) instead. Thus \(\widetilde{X}\) is a manifold with boundary and \(\partial \widetilde{X}=\cup _{i}L_{i}\). Let \(q<\dim X\) be a positive integer; an admissible triplet is a triplet \( \left( E,F,t\right) \) such that: \(\left( i\right) \) \(E\rightarrow \widetilde{ X}\) is a complex bundle, \(q\)-flat on \(\partial \widetilde{X}\); \(\left( ii\right) \) \(F\rightarrow \widetilde{X}\) is a sub-bundle with ch\(_{j}F=\)ch\(_{j}E\) for \( 2j\geq q+2\) and ch\(_{j}F=0\) for \(0<2j\leq q+1\); \(\left( iii\right) \) \( F_{| \partial \widetilde{X}}\) is trivial and \(t\) is a trivialisation.
In this paper the authors define \(K\)-theoretical groups \(I_{q}K\left( X\right) \) as the Grothendieck construction of the additive semigroup [M. F. Atiyah and D. W. Anderson, \(K\)-theory. With reprints of M. F. Atiyah: Power operations in K-theory. New York-Amsterdam: W. A. Benjamin, Inc. (1967; Zbl 0159.53302)] generated by the isomorphism classes \(\left[ E,F,t\right] \). By using the properties of intersection cohomology [A. Borel, et. al., Intersection cohomology. (Notes of a Seminar on Intersection Homology at the University of Bern, Switzerland, Spring 1983). Progress in Mathematics, Vol. 50. Swiss Seminars. (Boston-Basel-Stuttgart): Birkhäuser. (1984; Zbl 0553.14002)], the Chern character ch\(^{\prime }:I_{q}K\left( X\right) \rightarrow IH_{\widetilde{p}}^{\text{even}}\left( X; {\mathbb Q}\right) \) is defined obtaining an isomorphism \[ ch^{\prime }:I_{q}K\left( X\right) \otimes {\mathbb Q}\rightarrow IH_{ \widetilde{p}}^{\text{even}}\left( X;{\mathbb Q}\right) \] which is the main result in this note, where \(\widetilde{p}\) is a perversity and \(\widetilde{q}\) the complementary perversity. Finally, using the multiplicative \(K\)-theoretical groups of Karoubi [M. Karoubi, Homologie cyclique et K-theorie, Astérisque, 149. Publié avec le concours du Centre National de la Recherche Scientifique. Paris: Société Mathématique de France. (1987; Zbl 0648.18008)], the authors construct the Chern-Weil version of the above construction.

MSC:

55N15 Topological \(K\)-theory
19D06 \(Q\)- and plus-constructions
Full Text: DOI

References:

[1] Atiyah, M., \(K\)-Theory (1967), Benjamin: Benjamin New York · Zbl 0159.53302
[2] Borel, A., Intersection Cohomology, Progr. in Math., vol. 50 (1984), Birkhäuser: Birkhäuser Boston · Zbl 0553.14002
[3] Brasselet, J. P., de Rham theorems for singular varieties, Contemp. Math., 161, 95-112 (1994) · Zbl 0838.55007
[4] Brasselet, J. P.; Legrand, A., Differential forms on singular varieties and cyclic homology, (Singularity Theory, Liverpool 1996. Singularity Theory, Liverpool 1996, London Math. Soc. Lecture Note Ser., vol. 263 (1999), Cambridge Univ. Press), 175-187 · Zbl 0949.55003
[5] Brasselet, J. P.; Legrand, A.; Teleman, N., Hochshild homology of singular algebras, \(K\)-Theory, 29, 1-25 (2003) · Zbl 1045.58004
[6] Connes, A., Non commutative differential geometry, Publ. Math. IHES, 62, 257-360 (1985) · Zbl 0564.58002
[7] Goresky, M.; MacPherson, R., Intersection homology theory, Topology, 19, 135-162 (1980) · Zbl 0448.55004
[8] Karoubi, M., Homologie cyclique et \(K\)-théorie, Astérisquee, 149 (1987) · Zbl 0648.18008
[9] Karoubi, M., Théories générales des classes caractéristiques secondaires, \(K\)-Theory, 4, 55-87 (1990) · Zbl 0716.57018
[10] Schultze, B. W., Boundary Value Problems and Singular Pseudo-differential Operators, Pure Appl. Math. (1998), J. Wiley & Sons · Zbl 0907.35146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.