×

Application of finite-difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas. (English) Zbl 1205.76179

Summary: A robust finite-difference approach for solving physically distinct cross-disciplinary problems such as membrane-mediated protein-protein interactions and heat and magnetic field diffusion in plasmas is described for rectangular grids. Mathematical models representing these physical phenomena are fourth- and second-order partial differential equations with variable coefficients. The finite-difference coupled harmonic oscillators technique was developed to treat arbitrary aggregates of inclusions in membranes automatically accounting for their non-pairwise interactions. The method was applied to study the stabilization of ion channels in a cluster due to membrane-mediated interactions and to examine the effects of anisotropic membrane slope relaxation on the elastic free energy. To obtain contributions from heat and magnetic field diffusion, the splitting method for the physical processes has been used in the numerical solution of resistive magnetohydrodynamic equations. The fully implicit scheme is outlined, tested and applied to problems of the diffusive redistribution of magnetic field and heat in the plasma.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
35J40 Boundary value problems for higher-order elliptic equations
35K15 Initial value problems for second-order parabolic equations
65N06 Finite difference methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F50 Computational methods for sparse matrices

Software:

nag; HSL; NAG
Full Text: DOI

References:

[1] Morton, K. W.; Mayers, D. F., Numerical Solution of Partial Differential Equations (1994), Cambridge University Press · Zbl 0811.65063
[2] Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods (1995), Springer-Verlag · Zbl 0831.65087
[3] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (1997), Cambridge University Press · Zbl 0894.65054
[4] Birkhoff, G.; Lynch, R. E., Numerical Solutions of Elliptic Problems (1984), SIAM Publications: SIAM Publications Philadelphia · Zbl 0556.65078
[5] Richtmyer, R. D.; Morton, K. W., Difference Method for Initial-Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502
[6] Roach, P. J., Computational Fluid Dynamics (1976), Hermosa Publishers: Hermosa Publishers Albuquerque, NM
[7] Jordan, P.; Miloshevsky, G.; Partenskii, M., Energetics and gating of narrow ionic channels: The influence of channel architecture and lipid-channel interactions, in interfacial catalysis, (Volkov, A. G., Interfacial Catalysis, vol. 95 (2003), Marcel Dekker, Inc: Marcel Dekker, Inc New York), 493-534, (Chapter 3)
[8] Liberman, M. A.; DeGroot, J. S.; Toor, A.; Spielman, R. B., Physics of High-Density Z-Pinch Plasmas (1999), Springer: Springer New York
[9] Kovenya, V. M.; Cherny, S. G.; Pinchukov, V. I., Numerical modeling of stationary separation flows, (Proceedings of the IV International Conference on Boundared and International or Layers (1986), Boole Press), 117-129 · Zbl 0671.76092
[10] Kovenya, V. M.; Cherny, S. G.; Lebedev, A. S., Numerical methods for solving the gas dynamics and Navier-Stokes equation on the basic of the splitting up-method, (Davis, G. V.; Fletcher, C., Computational Fluid Dynamics (1988), North-Holland)
[11] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[12] Marcelja, S., Lipid-mediated protein interaction in membranes, Biochim. Biophys. Acta, 455, 1-7 (1976)
[13] Schröder, H., Aggregation of proteins in membranes. An example of fluctuation-induced interactions in liquid crystals, J. Chem. Phys., 67, 1617-1619 (1977)
[14] Owicki, J. C.; Springgate, M. W.; McConnell, H. M., Theoretical study of protein-lipid interactions in bilayer membranes, Proc. Natl. Acad. Sci. USA, 75, 1616-1619 (1978)
[15] Owicki, J. C.; McConnell, H. M., Theory of protein-lipid and protein-protein interactions in bilayer membranes, Proc. Natl. Acad. Sci. USA, 76, 4750-4754 (1979)
[16] Pearson, L. T.; Edelman, J.; Chan, S. I., Statistical mechanics of lipid membranes. Protein correlation functions and lipid ordering, Biophys. J., 45, 863-871 (1984)
[17] Landau, L. D.; Lifshitz, E. M., Statistical Physics (1969), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0080.19702
[18] Huang, H. W., Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime, Biophys. J., 50, 1061-1070 (1986)
[19] Helfrich, P.; Jakobsson, E., Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels, Biophys. J., 57, 1075-1084 (1990)
[20] Harroun, T. A.; Heller, W. T.; Weiss, T. M.; Yang, L.; Huang, H. W., Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J., 76, 3176-3185 (1999)
[21] Aranda-Espinoza, H.; Berman, A.; Dan, N.; Pincus, P.; Safran, S. A., Interaction between inclusions embedded in membranes, Biophys. J., 71, 648-656 (1996)
[22] May, S.; Ben-Shaul, A., Molecular theory of lipid-protein interaction and the L-HII transition, Biophys. J., 76, 751-767 (1999)
[23] Kim, K. S.; Neu, J.; Oster, G., Curvature-mediated interactions between membrane proteins, Biophys. J., 75, 2274-2291 (1998)
[24] Partenskii, M. B.; Miloshevsky, G. V.; Jordan, P. C., Stabilization of ion channels due to membrane-mediated elastic interaction, J. Chem. Phys., 118, 10306-10311 (2003)
[25] Partenskii, M. B.; Miloshevsky, G. V.; Jordan, P. C., Membrane inclusions as coupled harmonic oscillators: Effects due to anisotropic membrane slope relaxation, J. Chem. Phys., 120, 7183-7193 (2004)
[26] Partenskii, M. B.; Jordan, P. C., Membrane deformation and the elastic energy of insertion: Perturbation of membrane elastic constants due to peptide insertion, J. Chem. Phys., 117, 10768-10776 (2002)
[27] Miklin, S., Variational Methods in Mathematical Physics (1964), Macmillan · Zbl 0119.19002
[28] Harroun, T. A.; Heller, W. T.; Weiss, T. M.; Yang, L.; Huang, H. W., Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J., 76, 937-945 (1999)
[29] Nielsen, C.; Goulian, M.; Andersen, O. S., Energetics of inclusion-induced bilayer deformations, Biophys. J., 74, 1966-1983 (1998)
[30] Krall, N. A.; Trivelpiece, A. W., Principles of Plasma Physics (1973), McGraw-Hill: McGraw-Hill New York
[31] Potter, D. E., Numerical studies of the plasma focus, Phys. Fluids, 14, 1911-1924 (1971)
[32] Maxon, S.; Addleman, J., Two-dimensional magnetohydrodynamic calculations of the plasma focus, Phys. Fluids, 21, 1856-1865 (1978)
[33] Knoepfel, H., Pulsed High Magnetic Fields (1970), North-Holland Publisher: North-Holland Publisher Amsterdam-London
[34] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes (1989), Cambridge University Press · Zbl 0698.65001
[35] The NAG Fortran Library Manual, NAG Central Office, Mayfield House, 256 Banbury Road, Oxford. Available from: <http://www.nag.co.uk; The NAG Fortran Library Manual, NAG Central Office, Mayfield House, 256 Banbury Road, Oxford. Available from: <http://www.nag.co.uk
[36] Harwell Subroutine Library, UKAEA Harwell, 1988. Available from: <http://www.cse.clrc.ac.uk/nag/hsl/contents.shtml; Harwell Subroutine Library, UKAEA Harwell, 1988. Available from: <http://www.cse.clrc.ac.uk/nag/hsl/contents.shtml
[37] Lundbaek, J. A.; Andersen, O. S., Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels, Biophys. J., 76, 889-895 (1999)
[38] Y.S. Neustadt, M.B. Partenskii. Available from: <arXiv:physics/0212038; Y.S. Neustadt, M.B. Partenskii. Available from: <arXiv:physics/0212038
[39] Townsley, L. E.; Tucker, W. A.; Sham, S.; Hinton, J. F., Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles, Biochemistry, 40, 11676-11686 (2001)
[40] Goforth, R. L.; Aung, K. C.; Denise, V. G.; Lyndon, L. P.; Koeppe, R. E.; Andersen, O. S., Hydrophobic coupling of lipid bilayer energetics to channel function, J. Gen. Physiol., 121, 477-493 (2003)
[41] Rokitskaya, T. I.; Kotova, E. A.; Antonenko, Y. N., Tandem gramicidin channels cross-linked by streptavidin, J. Gen. Physiol., 121, 463-476 (2003)
[42] Al-Momani, L.; Reiß, P.; Koert, U., A lipid dependence in the formation of twin ion channels, Biochem. Biophys. Res. Commun., 328, 342-347 (2005)
[43] Samarskii, A. A.; Popov, Yu. P., Difference Methods for Solving Problems of Gas Dynamics (1980), Nauka: Nauka Moscow, (in Russian) · Zbl 0523.76062
[44] Tannehill, J. S.; Anderson, D. A.; Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer (1997), Hemisphere: Hemisphere New York
[45] Vesely, F. J., Computational Physics. An Introduction (2001), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers New York-London · Zbl 1049.65001
[46] A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov, B.J. Rice, HEIGHTS initial simulation of discharge-produced plasma hydrodynamics and radiation transport for EUV lithography, in: Proceedings of SPIE. Emerging Lithographic Technologies VII, vol. 5037 part 2, 2003, pp. 714-727.; A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov, B.J. Rice, HEIGHTS initial simulation of discharge-produced plasma hydrodynamics and radiation transport for EUV lithography, in: Proceedings of SPIE. Emerging Lithographic Technologies VII, vol. 5037 part 2, 2003, pp. 714-727.
[47] Hassanein, A.; Sizyuk, V.; Tolkach, V.; Morozov, V.; Rice, B. J., HEIGHTS initial simulation of discharge produced plasma hydrodynamics and radiation transport for extreme ultraviolet lithography, J. Microlithogr. Microfabric. Microsyst., 3, 130-138 (2004)
[48] Krucken, T.; Bergmann, K.; Juschkin, L.; Lebert, R., Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography, J. Phys. D: Appl. Phys., 37, 3213-3224 (2004)
[49] Lee, K. T.; Kim, S. H.; Kim, D.; Lee, T. N., Numerical study of Z-pinch carbon plasma, Phys. Plasmas, 3, 1340-1347 (1996)
[50] Whitney, K. G., Momentum and heat conduction in highly ionizable plasmas, Phys. Plasmas, 6, 816-830 (1999)
[51] Kingsep, A. S.; Karpov, V. E.; Lobanov, A. I.; Maron, Y.; Starobinets, A. A.; Fisher, V. I., Numerical modeling of the dynamics of a slow Z-pinch, Plasma Phys. Rep., 28, 286-295 (2002)
[52] Toth, G.; Odstrcil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. Comput. Phys., 128, 82-100 (1996) · Zbl 0860.76061
[53] 2D MHD Calculations of the Plasma Focus, Lawrence Livermor Laboratory, Preprint 79067, 1977.; 2D MHD Calculations of the Plasma Focus, Lawrence Livermor Laboratory, Preprint 79067, 1977.
[54] A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov, T. Sizyuk, B.J. Rice, V. Bakshi, Simulation and optimization of DPP hydrodynamics and radiation transport for EUV lithography devices, in: Proceedings of SPIE. Emerging Lithographic Technologies VIII, vol. 5374 part 1, 2004, pp. 413-422.; A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov, T. Sizyuk, B.J. Rice, V. Bakshi, Simulation and optimization of DPP hydrodynamics and radiation transport for EUV lithography devices, in: Proceedings of SPIE. Emerging Lithographic Technologies VIII, vol. 5374 part 1, 2004, pp. 413-422.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.