×

Huygens’ principle, Dirac operators, and rational solutions of the AKNS hierarchy. (English) Zbl 1088.37035

Summary: We prove that rational solutions of the AKNS hierarchy of the form \(q = \sigma/\tau\) and \(r = \rho/\tau\), where \((\sigma,\tau,\rho)\) are certain Schur functions, naturally yield Dirac operators of strict Huygens’ type, i.e., the support of their fundamental solutions is the surface of the light-cone. This strengthens the connection between the theory of completely integrable systems and Huygens principle by extending to the Dirac operators and the rational solutions of the AKNS hierarchy, a classical result of J. E. Lagnese and K. L. Stellmacher [J. Math. Mech. 17, 461–472 (1967; Zbl 0154.36002)] concerning perturbations of wave operators.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q58 Other completely integrable PDE (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs

Citations:

Zbl 0154.36002
Full Text: DOI

References:

[1] Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53(4) (1974), 249–315. · Zbl 0408.35068
[2] Adler, M. and Moser, J.: On a class of polynomials connected with the Korteweg–de Vries equation, Comm. Math. Phys. 61(1) (1978), 1–30. · Zbl 0428.35067 · doi:10.1007/BF01609465
[3] Airault, H., McKean, H. P. and Moser, J.: Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30(1) (1977), 95–148. · Zbl 0338.35024 · doi:10.1002/cpa.3160300106
[4] Baum, H.: The Dirac operator on Lorentzian spin manifolds and the Huygens property, J. Geom. Phys. 23 (1997), 42–64. · Zbl 0913.34074 · doi:10.1016/S0393-0440(96)00045-9
[5] Belger, M., Schimming, R. and Wünsch, V.: A survey on Huygens’ principle, Z. Anal. Anwendungen 16(1) (1997), 9–36. Dedicated to the memory of Paul Günther. · Zbl 0884.35081
[6] Berest, Yu. Yu. and Veselov, A. P.: The Huygens principle and integrability, Uspekhi Mat. Nauk 49(6(300)) (1994), 7–78. · Zbl 0941.35003
[7] Berest, Yu.: Hierarchies of Huygens’ operators and Hadamard’s conjecture, Acta Appl. Math. 53(2) (1998), 125–185. · Zbl 0923.35147 · doi:10.1023/A:1006069012474
[8] Berest, Yu. Yu.: Deformations preserving Huygens’ principle, J. Math. Phys. 35(8) (1994), 4041–4056. · Zbl 0809.35099 · doi:10.1063/1.530841
[9] Burchnall, J. and Chaudy, T.: A set of differential equations which can be solved by polynomials, Proc. London Math. Soc. 30 (1929), 401–414. · JFM 56.0384.03 · doi:10.1112/plms/s2-30.1.401
[10] Calogero, F. and Degasperis, A.: Spectral Transform and Solitons, Vol. I, North-Holland Publishing Co., Amsterdam, 1982. Tools to solve and investigate nonlinear evolution equations, Lecture Notes in Computer Science 144. · Zbl 0501.35072
[11] Chalub, F. A. C. C. and Zubelli, J. P.: On Huygens’ principle for Dirac operators and nonlinear evolution equations, J. Nonlin. Math. Phys. 8(Supplement) (2001), 62–68. · Zbl 0977.35112 · doi:10.2991/jnmp.2001.8.s.12
[12] Chalub, F. A. C. C. and Zubelli, J. P.: Matrix bispectrality and Huygens’ principle for Dirac operators, In: Contemp. Math. 362, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1072.58010
[13] Courant, R. and Hilbert, D.: Methods of Mathematical Physics, Vol. II, Partial Differential Equations, Reprint of the 1962 original, Wiley, New York, 1989. · Zbl 0729.35001
[14] Dirac, P. A. M.: The quantum theory of the electron, Proc. Roy. Soc. London A 117 (1928), 610–624. · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[15] Duistermaat, J. J. and Grünbaum, F. A.: Differential equations in the spectral parameter, Comm. Math. Phys. 103(2) (1986), 177–240. · Zbl 0625.34007 · doi:10.1007/BF01206937
[16] Falqui, G., Magri, F., Pedroni, M. and Zubelli, J. P.: An elementary approach to the polynomial {\(\tau\)}-functions of the KP-hierarchy, Teoret. Mat. Fiz. 122(1) (2000), 23–36. · Zbl 0983.37088
[17] Flaschka, H.: Construction of conservation laws for Lax equations. Comments on a paper ’On two constructions of conservation laws for Lax equations’, Quart. J. Math. Oxford Ser. (2) 34(133) (1983), 61–65. · Zbl 0551.35076 · doi:10.1093/qmath/34.1.61
[18] Folland, G. B.: Fundamental solutions for the wave operator, Exposition. Math. 15(1) (1997), 25–52. · Zbl 0886.35085
[19] Gilbert, J. E. and Murray, M. A. M.: Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge, 1991. · Zbl 0733.43001
[20] Grünbaum, F. A.: Band and time limiting, recursion relations, and some nonlinear evolution equations, In: W. Schempp, R. Askey and T. Koorwinder (eds), Special Functions: Group Theoretical Aspects and Applications, Reidel, Dordrecht, 1984, pp. 271–286. · Zbl 0596.35023
[21] Grünbaum, F. A.: Some bispectral musings, In: The Bispectral Problem (Montreal, PQ, 1997), Amer. Math. Soc., Providence, RI, 1998, pp. 31–45. · Zbl 0944.34062
[22] Günther, P.: Huygens’ Principle and Hyperbolic Equations, Academic Press, Boston, MA, 1988. With appendices by V. Wünsch. · Zbl 0655.35003
[23] Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover Publications, New York, 1953. · Zbl 0049.34805
[24] Harnad, J. and Kasman, A.: The bispectral problem, In: Proc. CRM Workshop, Montreal, Canada, March 1997. · Zbl 0885.00050
[25] Hirota, R.: Direct methods in soliton theory, In: R. Bullough and P. Caudrey (eds), Topics in Current Physics, Springer, New York, 1980, pp. 157–175.
[26] Ibragimov, N. H.: Huygens’ principle, In: Certain Problems of Mathematics and Mechanics (on the occasion of the seventieth birthday of M. A. Lavrent’ev; in Russian), Nauka, Leningrad, 1970, pp. 159–170.
[27] Ibragimov, N. Kh. and Oganesyan, A. O.: Hierarchy of Huygens equations in spaces with a nontrivial conformal group, Uspekhi Mat. Nauk, 46(3(279)) (1991), 111–146, 239. · Zbl 0778.35067
[28] Jimbo, M. and Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2(3) (1981), 407–448. · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[29] Jimbo, M. and Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Phys. D 4(1) (1981/1982), 26–46. · Zbl 1194.34169 · doi:10.1016/0167-2789(81)90003-8
[30] Kričever, I. M.: On the rational solutions of the Zaharov–Šabat equations and completely integrable systems of N particles on the line, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 84 (1979), 117–130, 312, 318. Boundary value problems of mathematical physics and related questions in the theory of functions, 11.
[31] Lagnese, J. E. and Stellmacher, K. L.: A method of generating classes of Huygens’ operators, J. Math. Mech. 17 (1967), 461–472. · Zbl 0154.36002
[32] Marchuk, N. G.: Dirac {\(\gamma\)}-equation, classical gauge fields and Clifford algebra, Adv. Appl. Clifford Algebras 8(1) (1998), 181–225. · Zbl 0918.15009 · doi:10.1007/BF03041932
[33] Mumford, D.: Tata Lectures on Theta. I. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman, Birkhäuser, Boston, MA, 1983. · Zbl 0509.14049
[34] Newell, A. C.: Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. · Zbl 0565.35003
[35] Sachs, R. L.: On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy, Phys. D 30(1–2) (1988), 1–27. · Zbl 0694.35207 · doi:10.1016/0167-2789(88)90095-4
[36] Sakurai, J. J.: Advanced Quantum Mechanics, Addison-Wesley, Englewood Cliffs, 1967.
[37] Sato, M. and Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, In: Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland, Amsterdam, 1983, pp. 259–271. · Zbl 0528.58020
[38] Schimming, R.: Korteweg–de Vries Hierarchie und Huygensschess Prinzip, In: Dresdener Seminar für Theoretische Phyzik, Sitzungsberichte Nr. 26, 1986.
[39] Schimming, R.: Laplace-like linear differential operators with a logarithm-free elementary solution, Math. Nachr. 148 (1990), 145–174. · Zbl 0735.35047
[40] Stellmacher, K. L.: Ein Beispiel einer Huyghensschen Differentialgleichung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys. Chem. Abt. 1953 (1953), 133–138.
[41] Stellmacher, K. L.: Eine Klasse Huyghenscher Differentialgleichungen und ihre Integration, Math. Ann. 130 (1955), 219–233. · Zbl 0134.31101 · doi:10.1007/BF01343350
[42] Thaller, B.: The Dirac Equation, Springer-Verlag, Berlin, 1992. · Zbl 0765.47023
[43] Wetterich, C.: Massless spinors in more than four dimensions, Nuclear Phys. B 211(1) (1983), 177–188. · doi:10.1016/0550-3213(83)90191-8
[44] Wilson, G.: Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177–204. · Zbl 0781.34051 · doi:10.1515/crll.1993.442.177
[45] Wilson, G.: Collisions of Calogero–Moser particles and an adelic Grassmannian (with an appendix by I. G. Macdonald), Invent. Math. 133(1) (1998), 1–41. · Zbl 0906.35089 · doi:10.1007/s002220050237
[46] Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Èksper. Teoret. Fiz. 61(1) (1971) 118–134.
[47] Zubelli, J. P.: Differential equations in the spectral parameter for matrix differential operators, Phys. D 43 (1990), 269–287. · Zbl 0706.34070 · doi:10.1016/0167-2789(90)90136-D
[48] Zubelli, J. P.: On the polynomial {\(\tau\)}-functions for the KP hierarchy and the bispectral property, Lett. Math. Phys. 24 (1992), 41–48. · Zbl 0757.35074 · doi:10.1007/BF00430001
[49] Zubelli, J. P. and Magri, F.: Differential equations in the spectral parameter, Darboux transformations, and a hierarchy of master symmetries for KdV, Comm. Math. Phys. 141(2) (1991), 329–351. · Zbl 0743.35072 · doi:10.1007/BF02101509
[50] Zubelli, J. P.: Rational solutions of nonlinear evolution equations, vertex operators, and bispectrality, J. Differential Equations 97(1) (1992), 71–98. · Zbl 0761.35099 · doi:10.1016/0022-0396(92)90084-Z
[51] Zubelli, J. P.: Topics on Wave Propagation and Huygens’ Principle, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997. · Zbl 1157.35300
[52] Zubelli, J. P. and Valerio Silva, D. S.: Rational solutions of the master symmetries of the KdV equation, Comm. Math. Phys. 211(1) (2000), 85–109. · Zbl 0956.37051 · doi:10.1007/s002200050803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.