×

Homoclinic bifurcations in symmetric unfoldings of a singularity with three-fold zero eigenvalue. (English) Zbl 1095.34024

The degenerate singularities and their unfoldings of plane vector fields are well studied. As for singularities in vector fields of dimension more than two much less results have been obtained due to the existence of global bifurcations, such as homoclinic or heteroclinic orbits, and chaotic behavior.
The paper studies a singularity at the origin with three-fold zero eigenvalue for symmetric vector fields with nilpotent linear part and 3-jet \(C^{\infty}\)-equivalent to
\[ y\,\frac{\partial}{\partial x}+z\,\frac{\partial}{\partial y}+ ax^2y\,\frac{\partial}{\partial z} \] with \(a\neq 0\). Under some conditions, several subfamilies of the symmetric versal unfoldings of this singularity are obtained by using normal form and blow-up methods. The local and global bifurcation behavior is derived. For some subfamilies of the symmetric versal unfoldings of this singularity, the existence of the Sil’nikov homoclinic bifurcation is proved by applying the generalized Mel’nikov methods of a homoclinic orbit to a hyperbolic or nonhyperbolic equilibrium.

MSC:

34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C23 Bifurcation theory for ordinary differential equations
37G05 Normal forms for dynamical systems
37G20 Hyperbolic singular points with homoclinic trajectories in dynamical systems
Full Text: DOI

References:

[1] Arnold, V. I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer–Verlag, New York, 1983 · Zbl 0507.34003
[2] Arnold, V. I., Afraimovich, V. S., Il’yashenko, Yu. S., Sil’nikov, L. P.: Bifurcation theory, in Dynamical Systems V, (Edited by D. V. Anosov and V. I. Arnold), VINITI, Moscow, 1986
[3] Dumortier, F.: Singularities of vector fields in the plane. J. Differential Equations, 23, 53–106 (1977) · Zbl 0346.58002 · doi:10.1016/0022-0396(77)90136-X
[4] Bogdanov, R.: Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues, Seminar Petrovaki (1976). Selecta Math. Soviet., 1(4), 389–421 (1989) · Zbl 0518.58030
[5] Takens, F.: Singularities of vector fields. Publ. Math. IHES., 43, 47–100 (1974) · Zbl 0279.58009
[6] Takens, F.: Unfoldings of certain singularities of vector fields: Generalized Hopf bifurcations. J. Differential Equations, 14, 476–493 (1973) · Zbl 0273.35009 · doi:10.1016/0022-0396(73)90062-4
[7] Annabi, M. L.: Dépendence continue par rapport aux paramétres dans la bifurcation de Hopf–Takens de codimension 3, Annal. Facultë Sci. Toulouse XII, 295–327, 1991 · Zbl 0810.58025
[8] Langford, W.: Periodic and steady state mode interactions lead to tori. SIAM J. Appl. Math., 37, 22–48 (1979) · Zbl 0417.34030 · doi:10.1137/0137003
[9] Langford, W., Iooss, G.: Interactions of Hopf and pitchfork bifurcations, In Bifurcation Problems and Their Numerical Solution (Eds. H. D. Mittelmann and H. Weber), Birkhäuser: Boston, 103–134, 1980 · Zbl 0437.34036
[10] Guckenheimer, J.: On a codimension two bifurcation, In Dynamical Systems and Turbulence (Eds. D. Rand and L.–S. Yong). Lecture Notes in Math., 898, 99–142 (1981) · Zbl 0482.58006 · doi:10.1007/BFb0091910
[11] Guckenheimer, J.: Multiple bifurcation problems of codimension two. SIAM J. Math. Anal., 15, 1–49 (1984) · Zbl 0543.34034 · doi:10.1137/0515001
[12] Broer, H. W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Th. and Dynam. Sys., 4, 509–525 (1984) · Zbl 0553.58024 · doi:10.1017/S0143385700002613
[13] Carr, J., Chow, S. N., Hall, J. K.: Abelian integrals and bifurcation theory. J. Differential Equations, 59, 413–436 (1985) · Zbl 0587.34033 · doi:10.1016/0022-0396(85)90148-2
[14] van Gils, S. A.: A note on ”Abelian Integrals and Bifurcation Theory”. J. Differential Equations, 59, 437–441 (1985) · Zbl 0642.34023 · doi:10.1016/0022-0396(85)90149-4
[15] Z’oladek, H.: On the versality of a family of symmetric vector fields in the plane. Math. USSR Sbornik, 48, 463–492 (1983) · Zbl 0554.58041
[16] Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3–parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part: the cusp case of codimension 3. Ergod. Th. and Dynam. Sys., 7, 375–413 (1987) · Zbl 0608.58034 · doi:10.1017/S0143385700004119
[17] Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3–parameter families of vector fields on the plane, unfolding of saddle, focus and elliptic singularity with nilpotent linear parts, In Bifurcations of Planar Vector Fields. Lecture Notes in Math., 1480, 1–64 (1991) · doi:10.1007/BFb0098354
[18] Rousseau, C.: Universal unfolding of a singularity of a symmetric vector field with 7–jet Cequivalent to y + ({\(\pm\)}x 3 {\(\pm\)} x 6 y). Lecture Notes in Math., 1455, 334–544 (1989) · doi:10.1007/BFb0085399
[19] Medved, M.: On a codimension three bifurcation. C’asopis. Pe’st. Mat., 109, 3–26 (1984)
[20] Yu, P., Huseyin, K.: Bifurcations associated with a three–fold zero eigenvalue. Quart. Appl. Math., XLVI, 193–216 (1988) · Zbl 0648.34053
[21] Dumortier, F., Kokubu, H., Oka, H.: A degenerate singularity generating geometric Lorenz attractors. Ergod. Th. and Dynam. Sys., 15, 833–856 (1995) · Zbl 0836.58030 · doi:10.1017/S0143385700009664
[22] Ibáez, S., Rodríguez, J. A.: Sil’nikov bifurcations in generic 4–unfoldings of a codimension–4 singularity. J. Differential Equations, 120, 411–428 (1995) · Zbl 0839.34050 · doi:10.1006/jdeq.1995.1116
[23] Elphick, C., Tirapegui, E., Brachet, M. E., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields. Physica D, 29, 95–127 (1987) · Zbl 0633.58020 · doi:10.1016/0167-2789(87)90049-2
[24] Sun, J. H., Luo, D. J.: Local and global bifurcations with nonhyperbolic equilibria. Science in China (Series A), 37, 523–534 (1994) · Zbl 0809.34055
[25] Sun, J. H.: Heteroclinic bifurcations with nonhyperbolic equilibria in \(\mathbb{R}\) n . Science in China (Series A), 24, 1145–1151 (1994)
[26] Sun, J. H.: Bifurcation and chaotic dynamics of homoclinic systems in \(\mathbb{R}\)3. Acta Math. Sinica, New series, 11, 128–136 (1995) · Zbl 0847.41017 · doi:10.1007/BF02274055
[27] Sun, J. H.: Equivalence of two Melnikov functions. Chin. Sci. Bull., 40, 396–399 (1995)
[28] Sun, J. H.: Melnikov vector function for high dimensional maps. Physics Letters A, 216, 47–52 (1996) · Zbl 0972.37503 · doi:10.1016/0375-9601(96)00263-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.