×

A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue. (English) Zbl 1128.35339

Summary: We prove a Brunn-Minkowski-type inequality for the eigenvalue \(\Lambda\) of the Monge-Ampère operator: \(\Lambda^{-1/2n}\) is concave in the class of \(C_+^2\) domains in \(\mathbb R^n\) endowed with Minkowski addition. The equality case is explicitly described too. The main device of the proof is a notion of addition for convex functions, called infimal convolution, which corresponds to the Minkowski addition of the graphs of the involved functions.

MSC:

35J60 Nonlinear elliptic equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] Borell, C., Capacitary inequalities of the Brunn-Minkowski type, Math. Ann., 263, 179-184 (1984) · Zbl 0546.31001
[2] Borell, C., Hitting probability of killed Brownian motiona study on geometric regularity, Ann. Sci. Ecole Norm. Sup. Paris, 17, 451-467 (1984) · Zbl 0573.60067
[3] Borell, C., Greenian potentials and concavity, Math. Ann., 272, 155-160 (1985) · Zbl 0584.31003
[4] Borell, C., Diffusion equations and geometric inequalities, Potential Anal., 12, 49-71 (2000) · Zbl 0976.60065
[5] Brascamp, H. J.; Lieb, E. H., On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, and with an application to the diffusion equation, J. Funct. Anal., 22, 366-389 (1976) · Zbl 0334.26009
[6] Caffarelli, L. A.; Jerison, D.; Lieb, E. H., On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math., 117, 193-207 (1996) · Zbl 0847.31005
[7] Caffarelli, L. A.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. I Monge-Ampère equation, Comm. Pure Appl. Math., 37, 369-402 (1984) · Zbl 0598.35047
[8] A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems, Adv. Math., to appear.; A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems, Adv. Math., to appear. · Zbl 1128.35318
[9] A. Colesanti, P. Cuoghi, The Brunn-Minkowski inequality for the \(n\); A. Colesanti, P. Cuoghi, The Brunn-Minkowski inequality for the \(n\) · Zbl 1074.31007
[10] A. Colesanti, P. Cuoghi, P. Salani, Brunn-Minkowski inequalities for two functionals involving the \(p\); A. Colesanti, P. Cuoghi, P. Salani, Brunn-Minkowski inequalities for two functionals involving the \(p\) · Zbl 1151.52307
[11] Colesanti, A.; Salani, P., The Brunn-Minkowski inequality for \(p\)-capacity of convex bodies, Math. Ann., 327, 459-479 (2003) · Zbl 1052.31005
[12] Dubuc, S., Critères de convexité et inégalités intégrales, Ann. Inst. Fourier, 27, 1, 135-165 (1977) · Zbl 0331.26008
[13] Federer, H., Geometric Measure Theory, Grundlehren der Mathematischen Wissenschaften, vol. 153 (1969), Springer: Springer New York · Zbl 0176.00801
[14] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39, 355-405 (2002) · Zbl 1019.26008
[15] Gutiérrez, C. E., The Monge-Ampère Equation, Progress in Nonlinear Differential equations and their Applications, vol. 44 (2001), Birkhäuser: Birkhäuser Boston · Zbl 0989.35052
[16] Jerison, D., A Minkowski problem for electrostatic capacity, Acta Math., 176, 1-47 (1996) · Zbl 0880.35041
[17] Jerison, D., The direct method in the calculus of variations for convex bodies, Adv. Math., 122, 262-279 (1996) · Zbl 0920.35056
[18] Lions, P. L., Two remarks on Monge-Ampere equations, Ann. Mat. Pura Appl., 142, 4, 262-275 (1985) · Zbl 0594.35023
[19] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton NJ · Zbl 0229.90020
[20] Schneider, R., Convex Bodiesthe Brunn-Minkowski Theory (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0798.52001
[21] Tso, K., On a real Monge-Ampère functional, Invent. Math., 101, 425-448 (1990) · Zbl 0724.35040
[22] Wang, X.-J., A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. (1), 43, 25-54 (1994) · Zbl 0805.35036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.