×

The dynamics of adaptation: An illuminating example and a Hamilton–Jacobi approach. (English) Zbl 1072.92035

Summary: Our starting point is a selection-mutation equation describing the adaptive dynamics of a quantitative trait under the influence of an ecological feedback loop. Based on the assumption of small (but frequent) mutations we employ asymptotic analysis to derive a Hamilton-Jacobi equation. Well-established and powerful numerical tools for solving the Hamilton-Jacobi equations then allow us to easily compute the evolution of the trait in a monomorphic population when this evolution is continuous but also when the trait exhibits a jump. By adapting the numerical method we can, at the expense of a significantly increased computing time, also capture the branching event in which a monomorphic population turns dimorphic and subsequently follow the evolution of the two traits in the dimorphic population.
From the beginning we concentrate on a caricatural yet interesting model for competition for two resources. This provides the perhaps simplest example of branching and has the great advantage that it can be analyzed and understood in detail.

MSC:

92D15 Problems related to evolution
37N25 Dynamical systems in biology
92D40 Ecology
Full Text: DOI

References:

[1] Augoula, S.; Abgrall, R., High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, J. Sci. Comput., 15, 2, 197-229 (2000) · Zbl 1077.65506
[2] Bardi, M.; Capuzzo Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations (1997), Birkhauser: Birkhauser Boston · Zbl 0890.49011
[3] Barles, G., Solutions de viscosité et équations de Hamilton-Jacobi (2002), Collec. SMAI: Collec. SMAI Springer, Paris
[4] Barles, G.; Evans, L. C.; Souganidis, P. E., Wavefront propagation for reaction diffusion systems of PDE, Duke Math. J., 61, 835-858 (1990) · Zbl 0749.35015
[5] Bürger, R., The Mathematical Theory of Selection, Recombination and Mutation (2000), Wiley: Wiley New York · Zbl 0959.92018
[6] Calcina, A.; Cuadrado, S., Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48, 135-159 (2004) · Zbl 1078.92051
[7] Champagnat, N.; Ferriere, R.; Ben Arous, G., The canonical equation of adaptive dynamics: a mathematical view, Selection, 2, 71-81 (2001)
[8] Crandall, M. G.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[9] Dercole, F., 2002. Evolutionary dynamics through bifurcation analysis: methods and applications. Ph.D. Dissertation, Politecnico di Milano, Italy; Dercole, F., Rinaldi, S. Analysis of Evolutionary Processes: The Adaptative Dynamics Approach and its Applications. Princeton University Press, Princeton, to appear.; Dercole, F., 2002. Evolutionary dynamics through bifurcation analysis: methods and applications. Ph.D. Dissertation, Politecnico di Milano, Italy; Dercole, F., Rinaldi, S. Analysis of Evolutionary Processes: The Adaptative Dynamics Approach and its Applications. Princeton University Press, Princeton, to appear.
[10] Dercole, F.; Irisson, J. O.; Rinaldi, S., Bifurcation analysis of a prey-predator coevolution model, SIAM J. Appl. Math., 64, 1378-1391 (2003) · Zbl 1020.92023
[11] Dieckmann, U.; Law, R., The dynamical theory of coevolution: a derivation from a stochastic ecological processes, J. Math. Biol., 34, 579-612 (1996) · Zbl 0845.92013
[12] Diekmann, O., 2004. Beginner’s Guide to Adaptive Dynamics, vol. 63. Banach Center Publications, pp. 47-86.; Diekmann, O., 2004. Beginner’s Guide to Adaptive Dynamics, vol. 63. Banach Center Publications, pp. 47-86. · Zbl 1051.92032
[13] Diekmann, O.; Gyllenberg, M.; Huang, H.; Kirkilionis, M.; Metz, J. A.J.; Thieme, H. R., On the formulation and analysis of general deterministic structured population models, II. Nonlinear theory. J. Math. Biol, 43, 157-189 (2001) · Zbl 1028.92019
[14] Diekmann, O.; Gyllenberg, M.; Metz, J. A.J., Steady state analysis of structured population models, Theor. Popul. Biol., 63, 309-338 (2003) · Zbl 1098.92062
[15] Evans, L. C.; Souganidis, P. E., A PDE approach to geometric optics for certain reaction-diffusion equations, Indiana Univ. Math J., 38, 141-172 (1989) · Zbl 0692.35014
[16] Ferriere, R., Méléard, S., Fournier, N., Champagnat, N., 2004. The mathematical of Darwinian evolution: from stochastic individual processes to adaptative dynamics, preprint.; Ferriere, R., Méléard, S., Fournier, N., Champagnat, N., 2004. The mathematical of Darwinian evolution: from stochastic individual processes to adaptative dynamics, preprint.
[17] Fleming, W.H., Soner, H.M., 1993. Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics, vol. 25. Springer, Berlin.; Fleming, W.H., Soner, H.M., 1993. Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics, vol. 25. Springer, Berlin. · Zbl 0773.60070
[18] Freidlin, M.I., 1992. Semi-linear PDEs and limit theorems for large deviations, in: Hennequin, P.L. (Ed.), Papers from the School held in Saint-Flour, July 1-18, 1990. Lecture Notes in Mathematics, vol. 1527. Springer, Berlin.; Freidlin, M.I., 1992. Semi-linear PDEs and limit theorems for large deviations, in: Hennequin, P.L. (Ed.), Papers from the School held in Saint-Flour, July 1-18, 1990. Lecture Notes in Mathematics, vol. 1527. Springer, Berlin. · Zbl 0777.60025
[19] Geritz, S.A.H. 2005. Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50 (1), 67-82.; Geritz, S.A.H. 2005. Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50 (1), 67-82. · Zbl 1055.92042
[20] Geritz, S. A.H.; Metz, J. A.J.; Kisdi, E.; Meszena, G., Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78, 2024-2027 (1997)
[21] Geritz, S. A.H.; Kisdi, E.; Meszena, G.; Metz, J. A.J., Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35-57 (1998)
[22] Metz, J.A.J., Geritz, S.A.H., Meszna, G., Jacobs, F.J.A., van Heerwaarden, J.S., 1996. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stochastic and Spatial Structures of Dynamical Systems, Amsterdam, 1995, pp. 183-231; Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45.; Metz, J.A.J., Geritz, S.A.H., Meszna, G., Jacobs, F.J.A., van Heerwaarden, J.S., 1996. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stochastic and Spatial Structures of Dynamical Systems, Amsterdam, 1995, pp. 183-231; Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45. · Zbl 0972.92024
[23] Mylius, S. M.; Diekmann, O., On ESS, optimisation and the need to be specific about density dependence, Oikos, 74, 218-224 (1995)
[24] Perthame, B., Souganidis, P.E., 2004. Front propagation for a jump process model arising in spatial ecology, DCDS(B), to appear.; Perthame, B., Souganidis, P.E., 2004. Front propagation for a jump process model arising in spatial ecology, DCDS(B), to appear. · Zbl 1085.35017
[25] Rueffler, C.; van Dooren, T. J.M.; Metz, J. A.J., Adaptive walks on changing landscapesLevins’ approach extended, Theor. Popul. Biol., 65, 165-178 (2004) · Zbl 1106.92057
[26] Rueffler, C., van Dooren, T.J.M., Metz, J.A.J., submitted. The evolution of resources specialisation through frequency-dependent and frequency-independent mechanisms. American Naturalist.; Rueffler, C., van Dooren, T.J.M., Metz, J.A.J., submitted. The evolution of resources specialisation through frequency-dependent and frequency-independent mechanisms. American Naturalist.
[27] Smith, H.L., Waltman, P., 1984. The Theory of the Chemostat. Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge.; Smith, H.L., Waltman, P., 1984. The Theory of the Chemostat. Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge. · Zbl 0860.92031
[28] Wolkowitz, G.S.K. Personal communication based on joint work with M. Ballyk and C. McCluskey.; Wolkowitz, G.S.K. Personal communication based on joint work with M. Ballyk and C. McCluskey.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.