×

Solving inverse problems involving the Navier–Stokes equations discretized by a Lagrange–Galerkin method. (English) Zbl 1112.74443

Summary: We are investigating the numerical approximation of an inverse problem involving the evolution of a Newtonian viscous incompressible fluid described by the Navier-Stokes equations in 2D. This system is discretized using a low order finite element in space coupled with a Lagrange-Galerkin scheme for the nonlinear advection operator. We introduce a full discrete linearized scheme that is used to compute the gradient of a given cost function by ensuring its consistency. Using gradient based optimization algorithms, we are able to deal with two fluid flow inverse problems, the drag reduction around a moving cylinder and the identification of a far-field velocity using the knowledge of the fluid load on a rectangular bluff body, for both fixed and prescribed moving configurations.

MSC:

74M10 Friction in solid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abergel, F.; Temam, R., On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1, 303-325 (1990) · Zbl 0708.76106
[2] Alekseev, A. K., On estimation of entrance boundary parameters from downstream measurements using adjoint approach, Int. J. Numer. Methods Fluids, 36, 8, 971-982 (2001) · Zbl 0989.76037
[3] X. Amandolèse, Contribution à l’étude des chargements fluides sur des obstacles non profilés fixes ou mobiles: application aux tabliers de pont. PhD thesis, Ecole Nationale des Ponts et Chaussées, 2001; X. Amandolèse, Contribution à l’étude des chargements fluides sur des obstacles non profilés fixes ou mobiles: application aux tabliers de pont. PhD thesis, Ecole Nationale des Ponts et Chaussées, 2001
[4] J.-P. Benqué, B. Ibler, A. Keramsi, G. Labadir, A finite element method for the Navier-Stokes equations, in: Proceedings of the Third International Conference on Finite Elements in Flow Problems, 1980; J.-P. Benqué, B. Ibler, A. Keramsi, G. Labadir, A finite element method for the Navier-Stokes equations, in: Proceedings of the Third International Conference on Finite Elements in Flow Problems, 1980
[5] Berggren, M., Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action, SIAM J. Sci. Comput., 19, 3, 829-860 (1998) · Zbl 0946.76016
[6] Bonnans, F. J.; Gilbert, J.-C.; Lemaréchal, C.; Sagastizábal, C., Numerical Optimization—Theoretical and Practice Aspects. Numerical Optimization—Theoretical and Practice Aspects, Mathématiques & Applications, vol. xii (1997), Springer: Springer New York · Zbl 0952.65044
[7] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208 (1995) · Zbl 0836.65080
[8] M. Chevalier, Adjoint based Control and Optimization of Aerodynamic Flows. PhD thesis, Department of Mechanics, Royal Institute of Technology, 2002; M. Chevalier, Adjoint based Control and Optimization of Aerodynamic Flows. PhD thesis, Department of Mechanics, Royal Institute of Technology, 2002
[9] M. Clerc, P. Le Tallec, M. Mallet, Optimal control for the parabolized Navier-Stokes system, Technical report, INRIA, RR-2653, 1995; M. Clerc, P. Le Tallec, M. Mallet, Optimal control for the parabolized Navier-Stokes system, Technical report, INRIA, RR-2653, 1995
[10] Coron, J.-M., On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM, Control Optim. Calc. Var., 1, 35-75 (1996) · Zbl 0872.93040
[11] M.A. Fernández, Simplified Models in Fluid-Structure Interaction Problems, PhD thesis, University of Paris Dauphine, 2001; M.A. Fernández, Simplified Models in Fluid-Structure Interaction Problems, PhD thesis, University of Paris Dauphine, 2001
[12] Fernández, M. A.; Moubachir, M., Sensitivity analysis for an incompressible aeroelastic system, Math. Models Methods Appl. Sci., 12, 8, 1109-1130 (2002) · Zbl 1041.76016
[13] Fernández-Cara, E., On the approximate and null controllability of the Navier-Stokes equations, SIAM Rev., 41, 2, 269-277 (1999) · Zbl 0945.93017
[14] G. Fourestey, Une méthode des caractéristiques d’ordre deux sur maillages mobiles pour la résolution des équations de Navier-Stokes, Technical report, INRIA, RR-4448, 2002; G. Fourestey, Une méthode des caractéristiques d’ordre deux sur maillages mobiles pour la résolution des équations de Navier-Stokes, Technical report, INRIA, RR-4448, 2002
[15] G. Fourestey, M. Moubachir, Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods, Technical report, INRIA, RR-4609, 2002; G. Fourestey, M. Moubachir, Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods, Technical report, INRIA, RR-4609, 2002 · Zbl 1112.74443
[16] Fursikov, A.; Gunzburger, M.; Hou, L., Trace theorems for three-dimensional, time-dependent solenoidal vector fields and their applications, Trans. Am. Math. Soc., 354, 3, 1079-1116 (2002) · Zbl 0988.46024
[17] Fursikov, A. V., Optimal Control of Distributed Systems. Theory and Applications. Optimal Control of Distributed Systems. Theory and Applications, Translations of Mathematical Monographs 187 (2000), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1027.93500
[18] Fursikov, A. V.; Gunzburger, M. D.; Hou, L. S., Boundary value problems and optimal boundary control for the Navier-Stokes system: the two-dimensional case, SIAM J. Control Optim., 36, 3, 852-894 (1998) · Zbl 0910.76011
[19] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0396.65070
[20] Gunzburger, M. D.; Manservisi, S., The velocity tracking problem for Navier-Stokes flows with bounded distributed controls, SIAM J. Control Optim., 37, 6, 1913-1945 (1999) · Zbl 0938.35118
[21] Gunzburger, M. D.; Manservisi, S., The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Control Optim., 39, 2, 594-634 (2000) · Zbl 0991.49002
[22] He, J.-W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J., Active control and drag optimization for flow past a circular cylinder. I: oscillatory cylinder rotation, J. Comput. Phys., 163, 1, 83-117 (2000) · Zbl 0977.76021
[23] Hinze, M.; Kunisch, K., Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., 40, 3, 925-946 (2001) · Zbl 1012.49026
[24] Homescu, C.; Navon, I. M.; Li, Z., Suppression of vortex shedding for flow around a circular cylinder using optimal control, Int. J. Numer. Methods Fluids, 38, 1, 43-69 (2002) · Zbl 1007.76019
[25] Imanuvilov, O. Y., Remarks on exact controllability for the Navier-Stokes equations, ESAIM, Control Optim. Calc. Var., 6, 39-72 (2001) · Zbl 0961.35104
[26] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., Ser. B, 45, 3, 503-528 (1989) · Zbl 0696.90048
[27] Maruoka, A.; Marin, M.; Kawahara, M., Optimal control in Navier-Stokes equations, Int. J. Comput. Fluid Dyn., 9, 313-322 (1998) · Zbl 0917.76085
[28] G. Medic, B. Mohammadi, Optimal control of 3D turbulent flow over circular cylinder, in: 4th AIAA CFD Conference—Norfolk, VI, USA, AIAA Paper, AIAA-99-3654, 1999; G. Medic, B. Mohammadi, Optimal control of 3D turbulent flow over circular cylinder, in: 4th AIAA CFD Conference—Norfolk, VI, USA, AIAA Paper, AIAA-99-3654, 1999
[29] Mohammadi, B.; Pironneau, O., (Applied Shape Optimization for Fluids. Applied Shape Optimization for Fluids, Numerical Mathematics and Scientific Computation, vol. xvi (2001), Clarendon Press: Clarendon Press Oxford), 251 · Zbl 0970.76003
[30] M. Moubachir, Control of fluid-structure interaction phenomena: application to the aeroelastic stability, PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002; M. Moubachir, Control of fluid-structure interaction phenomena: application to the aeroelastic stability, PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002
[31] M. Moubachir, J.-P. Zolésio, Optimal control of fluid-structure interaction systems: the case of a rigid body, Technical report, INRIA, RR-4611, 2002; M. Moubachir, J.-P. Zolésio, Optimal control of fluid-structure interaction systems: the case of a rigid body, Technical report, INRIA, RR-4611, 2002
[32] J. Nocedal, S.J. Wright, Numerical Optimization, in: Springer Series in Operations Research, 1999; J. Nocedal, S.J. Wright, Numerical Optimization, in: Springer Series in Operations Research, 1999 · Zbl 0930.65067
[33] Piperno, S.; Bournet, P.-E., Numerical simulations of wind effects on flexible civil engineering structures, Rev. Eur. Élém. Finis, 8, 5-6, 659-687 (1999) · Zbl 0977.74522
[34] Y. Saad, Iterative methods for sparse linear systems, 2000. Available from: <http://www-users.cs.umn.edu/saad/books.html; Y. Saad, Iterative methods for sparse linear systems, 2000. Available from: <http://www-users.cs.umn.edu/saad/books.html
[35] (S. S., Sritharan, Optimal Control of Viscous Flow, vol. xii (1998), SIAM: SIAM Philadelphia, PA) · Zbl 0920.76004
[36] Williamson, C. H.K., Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech., 28, 477-526 (1996) · Zbl 0899.76129
[37] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-BFGS-B Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 4, 550-560 (1997) · Zbl 0912.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.