×

On the employ of meshless methods in biomechanics. (English) Zbl 1112.74563

Summary: We analyse the convenience and possible advantages of using meshless methods in numerical simulations in biomechanics. While finite elements have been the universal tool during the last decades to perform such simulations, a recently developed wide family of methods, globally coined as meshless methods, has emerged as an attractive choice for an increasing variety of problems. They present some key advantages such as the absence of a mesh in the traditional sense, particularly important in domains of very complex geometry. These methods are also able to easily handle finite strains and large displacements in a Lagrangian framework due to their relatively less sensitivity to the point distributions. In this work we discuss the use of one of them, the natural element method, in biomechanics. After a brief review of this new approach, such a choice is justified and some examples showing the performance of the method are presented.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74L15 Biomechanical solid mechanics
92-08 Computational methods for problems pertaining to biology
92C10 Biomechanics
Full Text: DOI

References:

[1] Atluri, S. N.; Kim, H. G.; Cho, J. Y., A critical assesment of the truly meshless local Petrov-Galerkin and local boundary integral equation methods, Comput. Mech., 24, 348-372 (1999) · Zbl 0977.74593
[2] I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, Technical Report TICAM 02-03, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 2002; I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, Technical Report TICAM 02-03, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 2002
[3] Babuška, I.; Melenk, J. M., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 4, 289-314 (1996) · Zbl 0881.65099
[4] Babuška, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[5] Bagge, M., A model of bone adaptation as an optimization process, J. Biomech., 33, 11, 1349-1357 (2000)
[6] Beaupré, G. S.; Orr, T. E.; Carter, D. R., An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation, J. Orthop. Res., 8, 5, 662-670 (1990)
[7] Beaupré, G. S.; Orr, T. E.; Carter, D. R., An approach for time-dependent bone remodeling and remodeling-theoretical development, J. Orthop. Res., 8, 5, 651-661 (1990)
[8] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1998) · Zbl 0891.73075
[9] Belytschko, T.; Lu, Y. Y.; Gu, L., Crack propagation by element free Galerkin methods, Engineering Fracture Mechanics, 51, 2, 295-315 (1995)
[10] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[11] Braun, J.; Sambridge, M., A numerical method for solving partial differential equations on highly irregular evolving grids, Nature, 376, 655-660 (1995)
[12] Bueche, D.; Sukumar, N.; Moran, B., Dispersive properties of the natural element method, Comput. Mech., 25, 2/3, 207-219 (2000) · Zbl 0969.74075
[13] Carter, D. R.; Fyhrie, D. P.; Whalen, R. T., Trabecular bone density and loading history: regulation of tissue biology by mechanical energy, J. Biomech., 20, 785-795 (1987)
[14] Cowin, S. C., The relationship between the elasticity and tensor and the fabric tensor, Mech. Mater., 4, 137-147 (1985)
[15] Beaupré, G. S.; Simo, J. C.; Jacobs, C. R.; Levenston, M. E.; Carter, D. R., Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach, J. Biomech., 28, 4, 449-459 (1995)
[16] Beaupré, G. S.; Jacobs, C. R.; Simo, J. C.; Carter, D. R., Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations, J. Biomech., 30, 6, 603-613 (1997)
[17] Cueto, E.; Calvo, B.; Doblaré, M., Modeling three-dimensional piece-wise homogeneous domains using the α-shape based natural element method, Int. J. Numer. Methods Engrg., 54, 871-897 (2002) · Zbl 1098.74734
[18] Cueto, E.; Cegoñino, J.; Calvo, B.; Doblaré, M., On the imposition of essential boundary conditions in natural neighbour Galerkin methods, Commun. Numer. Methods Engrg., 19, 5, 361-376 (2003) · Zbl 1116.74428
[19] Cueto, E.; Doblaré, M.; Gracia, L., Imposing essential boundary conditions in the natural element method by means of density-scaled α-shapes, Int. J. Numer. Methods Engrg., 49, 4, 519-546 (2000) · Zbl 0989.74077
[20] Cueto, E.; Sukumar, N.; Calvo, B.; Cegoñino, J.; Doblaré, M., Overview and recent advances in natural neighbour Galerkin methods, Arch. Comput. Methods Engrg., 10, 4, 307-384 (2003) · Zbl 1050.74001
[21] B. Delaunay, Sur la Sphère Vide, A la memoire de Georges Voronoi. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, vol. 7, 1934, pp. 793-800; B. Delaunay, Sur la Sphère Vide, A la memoire de Georges Voronoi. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, vol. 7, 1934, pp. 793-800
[22] Doblaré, M.; Garcia, J. M., Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement, J. Biomech., 34, 9, 1157-1170 (2001)
[23] Doblaré, M.; García, J. M., Anisotropic bone remodeling model based on a continuum damage-repair theory, J. Biomech., 35, 1, 1-17 (2002)
[24] Duarte, C. A.M.; Oden, J. T., An H-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[25] Edelsbrunner, H.; Mücke, E., Three dimensional alpha shapes, ACM Trans. Graphics, 13, 43-72 (1994) · Zbl 0806.68107
[26] Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T., Enriched element-free Galerkin methods for crack tip fields, Int. J. Numer. Methods Engrg., 40 (1997)
[27] D. González, E. Cueto, M. Doblaré, Volumetric locking in natural neighbour Galerkin methods, Int. J. Numer. Methods Engrg., in press; D. González, E. Cueto, M. Doblaré, Volumetric locking in natural neighbour Galerkin methods, Int. J. Numer. Methods Engrg., in press · Zbl 1124.74328
[28] González, D.; Cueto, E.; Martinez, M. A.; Doblaré, M., Numerical integration in natural neighbour Galerkin methods, Int. J. Numer. Methods Engrg., 60, 12, 2077-2104 (2004) · Zbl 1070.74048
[29] Grootenboer, H. J.; Weinans, H.; Huiskes, R., The behaviour of bone-remodeling simulation models, J. Biomech., 25, 1425-1441 (1992)
[30] Huiskes, R.; Weinans, H.; Grootenboer, H. J., The behaviour of adaptive bone-remodeling simulation models, J. Biomech., 25, 12, 1425-1441 (1992)
[31] Huiskes, R.; Weinans, H.; van Rietbergen, B., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin. Orthop., 274, 124-134 (1992)
[32] C.R. Jacobs, Numerical Simulation of Bone Adaption to Mechanical Loading, PhD thesis, Stanford University, Stanford, CA, 1994; C.R. Jacobs, Numerical Simulation of Bone Adaption to Mechanical Loading, PhD thesis, Stanford University, Stanford, CA, 1994
[33] Levenston, M. E.; Fischer, K. J.; Jacobs, C. R.; Carter, D. R., Observations of convergence and uniqueness of node-based bone remodeling simulations, Ann. Biomed. Engrg., 25, 261-268 (1997)
[34] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1-34 (2002)
[35] Liu, W. K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. Numer. Methods Fluids, 21, 901-931 (1995) · Zbl 0885.76078
[36] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods, Int. J. Numer. Methods Engrg., 38, 1655-1679 (1995) · Zbl 0840.73078
[37] M.A. Martíez, B. Calvo, M. Doblaré, Natural element formulation of hyperelastic materials, Int. J. Numer. Methods Eng., in press; M.A. Martíez, B. Calvo, M. Doblaré, Natural element formulation of hyperelastic materials, Int. J. Numer. Methods Eng., in press
[38] Martíez, M. A.; Cueto, E.; Doblaré, M.; Chinesta, F., Natural element meshless simulation of injection processes involving short fiber suspensions, Int. J. Forming Processes, 4, 3-4 (2002)
[39] Martmez, M. A.; Cueto, E.; Doblaré, M.; Chinesta, F., Fixed mesh and meshfree techniques in the numerical simulation of injection processes involving short fiber suspensions, J. Non-Newton. Fluid Mech., 115, 51-78 (2003) · Zbl 1137.76449
[40] Mow, C. V.; Kuei, S. C.; Lai, W. M.; Armstrong, C. G., Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomech. Engrg., 102, 73-84 (1980)
[41] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[42] Grootenboer, H. J.; Dalstra, M.; Fudala, B.; Sloof, T. J.; Huiskes, R.; Weinans, H., Adaptive bone-remodelling theory applied to prosthetic-design analysis, J. Biomech., 20, 11/12, 1135-1150 (1987)
[43] Sibson, R., A brief description of natural neighbour interpolation, (Barnett, V., Interpreting Multivariate Data (1981), John Wiley), 21-36
[44] Structural Dynamics Research Corporation, I-Deas Tutorials, EDS, 2001; Structural Dynamics Research Corporation, I-Deas Tutorials, EDS, 2001
[45] N. Sukumar, The Natural Element Method in Solid Mechanics, PhD thesis, Northwestern University, Evanston, IL, 1998; N. Sukumar, The Natural Element Method in Solid Mechanics, PhD thesis, Northwestern University, Evanston, IL, 1998 · Zbl 0940.74078
[46] Sukumar, N.; Moran, B., \(C^1\) natural neighbour interpolant for partial differential equations, Numer. Methods Partial Differen. Equat., 15, 4, 417-447 (1999) · Zbl 0943.74080
[47] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Int. J. Numer. Methods Engrg., 43, 5, 839-887 (1998) · Zbl 0940.74078
[48] Sukumar, N.; Moran, B.; Yu Semenov, A.; Belikov, V. V., Natural neighbor Galerkin methods, Int. J. Numer. Methods Engrg., 50, 1, 1-27 (2001) · Zbl 1082.74554
[49] Traversoni, L., Natural neighbour finite elements, (International Conference on Hydraulic Engineering Software, Hydrosoft Proceedings (1994), Computational Mechanics Publications), 291-297
[50] Voronoi, G. M., Nouvelles applications des Paramètres Continus à la Théorie des Formes Quadratiques. Deuxième Memoire: Recherches sur les parallélloèdres Primitifs, J. Reine Angew. Math., 134, 198-287 (1908) · JFM 39.0274.01
[51] Weiss, J. A.; Gardiner, J. C., Computational modeling of ligament mechanics, Crit. Rev. Biomed. Engrg., 29, 3, 1-70 (2001)
[52] Weiss, J. A.; Maker, B. N.; Govindjee, S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg., 135, 107-128 (1996) · Zbl 0893.73071
[53] Zienkiewicz, O. C.; Humpheson, C.; Lewis, W., A unified approach to soil mechanics problems (including plasticity and viscoplasticity), (Gudehus, G., Finite Elements in Geomechanics (1977)), 151-178
[54] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part I: The recovery technique, Int. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.