×

Cyclic quotients of \(2\)-dimensional quasi-homogeneous hypersurface singularities. (English) Zbl 0735.32024

Let \((X,x)=\{f=0\}\subset\mathbb{C}^ 3\) be an isolated quasi-homogeneous hypersurface singularity and \(G=\langle(e_ n^{i_ 0},e_ n^{i_ 1},e_ 2^{i_ 2})\rangle\) a cyclic group which is diagonally acting on \((X,x)\), where \(e_ n=\exp(2\pi\sqrt{-1}/n)\). Then the quotient \((x/G,\pi(0))\) is a normal surface singularity with \(\mathbb{C}^*\)-action. In our paper we study those surface singularities. Although they are very special normal surface singularities with \(\mathbb{C}^*\)-action, it is meaningful to study them. Because, if we consider a singularity of such type, we can easily compute the genus \(p_ g\) and determine if it is Gorenstein, though it is not easy to do them for general normal surface singularities with \(\mathbb{C}^*\)-action.
In section 2, we give a method to resolve them; it is obtained by the techniques of P. Orlik, Ph. Wagreich and A. Fujiki. Although the algorithm is not so simple, it is easy to program for the computer. In section 3, we give a formula to compute the geometric genus \(p_ g(X/G,\pi(0))\) and a criterion for \((X/G,\pi(0))\) to be Gorenstein. In section 4, we classify all rational singularities which are obtained as cyclic quotients of the simple elliptic singularity \(\tilde E_ 8\) by a reflection free finite cyclic group \(G\). These singularities are already found as weighted dual graph from other different points of view. Our result gives concrete representations for them.
Reviewer: T.Tomaru (Gunma)

MSC:

32S25 Complex surface and hypersurface singularities
14J17 Singularities of surfaces or higher-dimensional varieties

References:

[1] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin Heidelberg New York: Springer 1984 · Zbl 0718.14023
[2] Brieskorn, E.: Rationale Singularitäten komplexer Flächen, Invent. Math.4, 336–358 (1969) · Zbl 0219.14003 · doi:10.1007/BF01425318
[3] Cartan, H.: Quotients of complex analytic spaces. In: Contribution to Function Theory, pp. 1–15, Bombay: Tata Institute 1960 · Zbl 0154.33603
[4] Demazure, M.: Anneaux gradués normaux. In: Séminaire Demazure-Giraud-Teissier, Singularities des surfaces, Paris: École Polytechnique 1979
[5] Dolgachev, I.V.: Weighted projective varieties. In: Carrell, J.B. (ed.). Group Actions and Vector Fields. Proc. Polish-North Amer. Sem Vancouver, 1981. (Lect. Notes Math., vol. 956, pp. 34–71) Berlin Heidelberg New York: Springer 1982
[6] Fujiki, A.: On resolution of cyclic quotient singularities. Publ. Res. Inst. Math. Sci.10, 293–328 (1974) · Zbl 0313.32012 · doi:10.2977/prims/1195192183
[7] Goto, S., Watanabe, K-i.: On graded rings I. J. Math. Soc. Japan30, 179–213 (1978) · doi:10.2969/jmsj/03020179
[8] Hinič, V.A.: On the Gorenstein properties of the ring of invariants of a Gorenstein ring. Math. USSR Izv.10, 47–53 (1976) · Zbl 0347.13012 · doi:10.1070/IM1976v010n01ABEH001677
[9] Hochster, M., Eagon, J.A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math.93, 1020–1058 (1971) · Zbl 0244.13012 · doi:10.2307/2373744
[10] Karras, U.: Klassifikation 2-dimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen. Math. Ann.213, 231–255 (1975) · Zbl 0285.57019 · doi:10.1007/BF01350873
[11] Kawamata, Y.: On the classification of non-complete algebraic surfaces. In: Lønsted, K. (ed.) Algebraic Geometry. Copenhagen 1978. (Lect. Notes Math., vol. 732, pp. 215–232) Berlin Heidelberg New York: Springer 1979 · Zbl 0404.14011
[12] Orlik, P., Wagreich, P.: Isolated singularities of algebraic surface with C*-action. Ann. Math.93, 205–228 (1971) · Zbl 0212.53702 · doi:10.2307/1970772
[13] Orlik, P., Wagreich, P.: Singularities of algebraic surfaces with C*-action. Math. Ann.193, 121–135 (1971) · doi:10.1007/BF02052820
[14] Orlik, P.: Seifert manifolds. (Lect. Notes Math., vol. 291) Berlin Heidelberg New York: Springer 1972 · Zbl 0263.57001
[15] Orlik, P., Wagreich, P.: Algebraic surfaces withk *-action. Acta. Math.138, 43–81 (1977) · Zbl 0352.14016 · doi:10.1007/BF02392313
[16] Pinkham, H.: Normal surface singularities with C*-action. Math. Ann.227, 183–193 (1977) · Zbl 0338.14010 · doi:10.1007/BF01350195
[17] Riemenschneider, O.: Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann.209, 211–248 (1974) · Zbl 0275.32010 · doi:10.1007/BF01351850
[18] Riemenschneider, O.: Die Invarianten der endlichen Untergruppen von GL(2, C), Math. Z.153, 37–50 (1977) · Zbl 0336.32012 · doi:10.1007/BF01214732
[19] Saito, K.: Einfach-elliptische Singularitäten. Invent. Math.23, 289–325 (1974) · Zbl 0296.14019 · doi:10.1007/BF01389749
[20] Tomari, M., Watanabe, K-i.: On cyclic cover of normal graded rings. (Preprint) · Zbl 1078.14512
[21] Tsuji, H.: Completely negatively pinched Kähler surfaces of finite volume. Tôhoku Math. J.40, 591–597 (1988) · Zbl 0661.53048 · doi:10.2748/tmj/1178227923
[22] Wagreich, P.: Singularities of complex surfaces with solvable local fundamental group. Topology11, 51–72 (1972) · doi:10.1016/0040-9383(72)90022-5
[23] Wahl, J.M.: Equations defining rational singularities. Ann. Sci. Éc. Norm. Supér., IV. Sér.10, 231–264 (1977) · Zbl 0367.14004
[24] Watanabe, K-i.: Some remarks concerning Demazure’s construction of normal graded rings. Nagoya Math. J.83, 203–211 (1981) · Zbl 0518.13003
[25] Watanabe, K-i.: On plurigenera of normal isolated singularities. I. Math. Ann.250, 65–94 (1980) · Zbl 0414.32005
[26] Yau, S.S.T.: On maximally elliptic singularities. Trans. Am. Math. Soc., II. Ser.257, 269–329 (1980) · Zbl 0343.32009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.