×

Hessians of spectral zeta functions. (English) Zbl 1057.58014

From the author’s abstract: For a general geometric differential operator of Laplace type [on a closed Riemannian manifold – the reviewer] with eigenvalues \(0\leq\lambda_1\leq\lambda_2\leq\cdots\), we consider the spectral zeta function \(Z(s)=\sum_{\lambda_j\neq0}\lambda_j^{-s}\). The modified zeta function \({\mathcal Z}(s)=\Gamma(s)Z(s)/\Gamma(s-n/2)\) is an entire function of \(s\). For a fixed value of \(s\), we calculate the Hessian of \({\mathcal Z}(s)\) with respect to the metric and show that it is given by a pseudodifferential operator \(T_s=U_s+V_s\) where \(U_s\) is polyhomogeneous of degree \(n-2s\) and \(V_s\) is polyhomogeneous of degree \(2\). The operators \(U_s/\Gamma(n/2+1-s)\) and \(V_s/\Gamma(n/2+1-s)\) are entire in \(s\). The symbol expansion of \(U_s\) is computable from the symbol of the Laplacian.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
58J40 Pseudodifferential and Fourier integral operators on manifolds
58E11 Critical metrics

References:

[1] T. Branson, Sharp inequalities, the functional determinant, and the complementary series , Trans. Amer. Math. Soc. 347 (1995), 3671–3742. JSTOR: · Zbl 0848.58047 · doi:10.2307/2155203
[2] T. Branson, S.-Y. A. Chang, and P. Yang, Estimates and extremals for zeta function determinants on four-manifolds , Comm. Math. Phys. 149 (1992), 241–262. · Zbl 0761.58053 · doi:10.1007/BF02097624
[3] S.-Y. A. Chang, M. Gursky, and P. Yang, An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature , Ann. of Math. (2) 155 (2002), 709–787. JSTOR: · Zbl 1031.53062 · doi:10.2307/3062131
[4] S.-Y. A. Chang and J. Qing, Zeta functional determinants on manifolds with boundary , Math. Res. Lett. 3 (1996), 1–17. · Zbl 0865.58048 · doi:10.4310/MRL.1996.v3.n1.a1
[5] S.-Y. A. Chang and P. Yang, Extremal metrics of zeta function determinants on \(4\)-manifolds , Ann. of Math. (2) 142 (1995), 171–212. JSTOR: · Zbl 0842.58011 · doi:10.2307/2118613
[6] I. Chavel, Eigenvalues in Riemannian Geometry , Pure Appl. Math. 115 , Academic Press, Orlando, Fla., 1984. · Zbl 0551.53001
[7] P. B. Gilkey, The Index Theorem and the Heat Equation , Math. Lecture Ser. 4 , Publish or Perish, Boston, 1974. · Zbl 0287.58006
[8] V. Guillemin and S. Sternberg, “Some remarks on I. M. Gelfand’s work” in Izrail M. Gelfand: Collected Papers, Vol. 1 , Springer, Berlin, 1987, 831–836.
[9] L. Hörmander, The spectral function of an elliptic operator , Acta Math. 121 (1968), 193–218. · Zbl 0164.13201 · doi:10.1007/BF02391913
[10] C. Morpurgo, Sharp trace inequalities for intertwining operators on \(S^ n\) and \(R^ n\) , Internat. Math. Res. Notices 1999 , no. 20, 1101–1117. · Zbl 0963.58012 · doi:10.1155/S1073792899000616
[11] –. –. –. –., Sharp inequalities for functional integrals and traces of conformally invariant operators , Duke Math. J. 114 (2002), 477–553. · Zbl 1065.58022 · doi:10.1215/S0012-7094-02-11433-1
[12] K. Okikiolu, Critical metrics for the determinant of the Laplacian in odd dimensions , Ann. of Math. (2) 153 (2001), 471–531. JSTOR: · Zbl 0985.58013 · doi:10.2307/2661347
[13] ——–, Critical metrics for the zeta function of a family of scalar Laplacians , in preparation.
[14] K. Okikiolu and C. Wang, Hessian of the zeta function for the Laplacian on forms , · Zbl 1074.58016 · doi:10.1515/form.2005.17.1.105
[15] B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces , J. Funct. Anal. 80 (1988), 212–234. · Zbl 0653.53021 · doi:10.1016/0022-1236(88)90071-7
[16] –. –. –. –., Extremals of determinants of Laplacians , J. Funct. Anal. 80 (1988), 148–211. · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[17] –. –. –. –., Moduli space, heights and isospectral sets of plane domains , Ann. of Math. (2) 129 (1989), 293–362. JSTOR: · Zbl 0677.58045 · doi:10.2307/1971449
[18] K. Richardson, Critical points of the determinant of the Laplace operator , J. Funct. Anal. 122 (1994), 52–83. · Zbl 0805.58063 · doi:10.1006/jfan.1994.1061
[19] R. Seeley, “Complex powers of an elliptic operator” in Singular Integrals (Chicago, 1996) , Amer. Math. Soc., Providence, 1967, 131–160. · Zbl 0159.15504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.