×

Boundedness and stability for higher order difference equations. (English) Zbl 1049.39006

Let \[ x_{n+1}=f(x_n,x_{n-1},\dots,x_{n-k}),\;n\in \mathbb{N}=\{0,1,2,\dots\}\tag{\(*\)} \] be a scalar difference equation, where \(k\) is a positive integer and \(f:\mathbb{R}^{k+1}\to \mathbb{R}\) is a continuous function. Using the concept of discrete exponential ordering, the authors are able to show under some conditions that the boundedness of all solutions as well as the local and global stability of (\(*\)) hold if and only if they hold for the equation \(x_{n+1}=h(x_n)\), where \(h(x)=f(x,x,\dots,x)\). The authors apply their results to the equations: \[ x_{n+1}=bx_n+g(x_n-x_{n-1}), \quad 0<b<1,\tag{A} \] where \(f:\mathbb R\to\mathbb R\) is a nondecreasing function and \[ x_{n+1}=ax_n+H(x_{n-k}), \quad 0<a<1, \tag{B} \] where \(H:(0,\infty )\to (0,\infty )\) is differentiable.
For equation (B), the following interesting result is obtained.
Theorem: Assume that \(H^{\prime}(x)\geq -a^{k+1}\frac{k^k}{(k+1)^{k+1}}\) for \(x>0\). If equation (B) has a unique equilibrium \(x^{*},\) then \(x^{*}\) is globally asymptotically stable if and only if \(H(x)<(1-a)x\) for \(x\in (x^{*},\infty)\) and \(H(x)>(1-a)x\) for \(x\in (0,x^{*})\).
Reviewer: Fozi Dannan (Doha)

MSC:

39A11 Stability of difference equations (MSC2000)
Full Text: DOI

References:

[1] Dancer EN, J. Reine Angew. Math. 419 pp 125– (1991)
[2] DOI: 10.1016/0362-546X(84)90009-9 · Zbl 0539.39003 · doi:10.1016/0362-546X(84)90009-9
[3] DOI: 10.1007/978-3-662-06822-9 · doi:10.1007/978-3-662-06822-9
[4] DOI: 10.1016/0362-546X(91)90142-N · Zbl 0763.39001 · doi:10.1016/0362-546X(91)90142-N
[5] DOI: 10.1016/0362-546X(91)90192-4 · Zbl 0760.92019 · doi:10.1016/0362-546X(91)90192-4
[6] DOI: 10.1002/1522-2616(200209)243:1<134::AID-MANA134>3.0.CO;2-# · Zbl 1045.47043 · doi:10.1002/1522-2616(200209)243:1<134::AID-MANA134>3.0.CO;2-#
[7] DOI: 10.1090/S0002-9939-1992-1100657-1 · doi:10.1090/S0002-9939-1992-1100657-1
[8] Kocic VL, Kluwer Academic (1993)
[9] DOI: 10.1080/10236199508808032 · Zbl 0855.39005 · doi:10.1080/10236199508808032
[10] U. Krause, A local–global stability principle for discrete systems and difference equations, in Proceedings of ICDEA 2001 · Zbl 1065.39015
[11] M. Pituk, Global asymptotic stability in a perturbed higher order linear difference equation, in ”Advances in Difference Equations IV Comp. Math. Appl. · Zbl 1053.39017 · doi:10.1016/S0898-1221(03)00084-1
[12] M. Pituk, Convergence to equilibria in scalar nonquasimonotone functional differential equations, J. Differential Equations (to appear). · Zbl 1071.34083 · doi:10.1016/S0022-0396(03)00147-5
[13] DOI: 10.1007/BF00375672 · Zbl 0755.58039 · doi:10.1007/BF00375672
[14] DOI: 10.1007/978-1-4684-9928-5 · doi:10.1007/978-1-4684-9928-5
[15] DOI: 10.1016/S0362-546X(96)00054-5 · Zbl 0877.39004 · doi:10.1016/S0362-546X(96)00054-5
[16] Smith HL, Mathematical Surveys and Monographs 41 (1995)
[17] DOI: 10.1080/10236199708808108 · Zbl 0907.39004 · doi:10.1080/10236199708808108
[18] DOI: 10.1016/0022-247X(90)90105-O · Zbl 0719.34123 · doi:10.1016/0022-247X(90)90105-O
[19] DOI: 10.1016/0022-247X(90)90040-M · Zbl 0744.47037 · doi:10.1016/0022-247X(90)90040-M
[20] Zeidler E, Springer (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.