×

Results on the classification of rational 3-tangles. (English) Zbl 1065.57004

The author uses the notation \(\mathbb{T}_n\) for the set of rational \(n\)-string tangles and to each diagram \(D\) of a tangle \(T\in \mathbb{T}\) associates the matrix \(M(D)(a,a^{-1})\in M_{3\times 3}(\mathbb{Z}[a,a^{-1}])\) which is a regular isotopy invariant obtained by applying the Kauffman bracket polynomial to tangles, from which the matrices \(M_1\) and \(M_2\), evaluated at \(a = \sqrt i\) and \(a=\frac{1+\sqrt 3}{2}\), respectively, are obtained.
The author embeds a rational 2-string tangle \(B\) in \(\mathbb{T}_2\) to obtain the 3-tangles \(B^g\) and \(B_g\) in \(\mathbb{T}_3\) by adding the bottom and top strings, respectively, and writes \(\mathbb{T}\mathbb{G} = \{B^g|B\in \mathbb{T}_2\}\subset \{B_g\mid B\in \mathbb{T}_2\}\). Also the author defines a subclass \(B\widehat X B\) of \(\mathbb{T}_3\) by using 4 special types of 3-tangles and the 3-braid group \(\mathbb{B}_3\).
Then the author extends the previous result on the classification of the 3-braid group \(\mathbb{B}_3\) to the subfamilies \(\mathbb{B}_3\subset \mathbb{T}\mathbb{G}\), \(\mathbb{B}_3+\mathbb{T}\mathbb{G}\), \(\mathbb{T}\mathbb{G}+\mathbb{B}_3\) and \(B\widehat XB\) of \(\mathbb{T}^3\), by using the matrix \(M_2\) and a certain equivalence class of \(M_1\) which are ambient isotopy invariants.
Theorem 0.1. Let \(T_1,T_2\in\mathbb{T}\). Then \(T_1\) and \(T_2\) are equivalent if and only if \(M_j(T_1) = M_j(T_2)\) for \(j = 1,2\) where \(\mathbb{T}\) denotes one of the subfamilies \(\mathbb{B}_3\), \(\mathbb{B}_3\cup \mathbb{T}\mathbb{G}\), \(\mathbb{B}_3+\mathbb{T}\mathbb{G}\), \(\mathbb{T}\mathbb{G} +\mathbb{B}_3\) and \(B\widehat XB\) of \(\mathbb{T}_3\).
Finally the author says that it is still not known whether these invariants will classify the set \(\mathbb{T}_3\).

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI

References:

[1] J. Conway, Computational Problems in Abstract Algebra: Proc. Conf. Oxford 1967 (Pergamon Press, 1970) pp. 329–358.
[2] DOI: 10.1017/S0305004100069383 · Zbl 0727.57005 · doi:10.1017/S0305004100069383
[3] DOI: 10.1017/S0305004198002989 · Zbl 0916.57013 · doi:10.1017/S0305004198002989
[4] DOI: 10.1017/S0033583500003498 · doi:10.1017/S0033583500003498
[5] DOI: 10.1142/S021821650000058X · Zbl 1001.57009 · doi:10.1142/S021821650000058X
[6] DOI: 10.1006/aama.1996.0511 · Zbl 0871.57002 · doi:10.1006/aama.1996.0511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.