×

Some necessary and sufficient conditions for \(p\)-nilpotence of finite groups. (English) Zbl 1060.20016

Let \(G\) be a finite group, let \(p\) be a prime dividing \(|G|\), let \(P\in\text{Syl}_p(G)\), \(O=[P,O^p(G)]\), \(U=P\cap O\) and \(V=\Omega(U)\), where \(\Omega=\Omega_1\) for \(p>2\) and \(\Omega=\Omega_2\) for \(p=2\).
The authors show that the \(p\)-nilpotency of \(G\) is determined to a large extent by the subgroup \(V\).
The paper contains a large number of characterizations of \(p\)-nilpotency. For example, the following are equivalent: 1) \(G\) is \(p\)-nilpotent; 2) \(V\) lies in \(Z(N_G(P))\); 3) \(N_G(H)/C_G(H)\) is a \(p\)-group for every nontrivial subgroup \(H\) of \(V\); 4) \(N_G(H)\) is \(p\)-nilpotent for every nontrivial subgroup \(H\) of \(V\); 5) \(N_G(P)\) is \(p\)-nilpotent and every minimal subgroup of \(U\) is complemented in \(P\).
Theorem 3.3 ensures that, given a saturated formation \(\mathcal F\) containing the class of supersolvable groups, and given a normal subgroup \(H\) of \(G\) such that \(G/H\in{\mathcal F}\), then \(G\in{\mathcal F}\) provided that for every prime \(p\in\pi(H)\) and every \(P\in\text{Syl}_p(H)\) the minimal subgroups of \(P\cap[P,O^p(G)]\) are complemented in \(N_G(P)\).

MSC:

20D15 Finite nilpotent groups, \(p\)-groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
Full Text: DOI

References:

[1] DOI: 10.1006/jabr.1999.8274 · Zbl 0961.20016 · doi:10.1006/jabr.1999.8274
[2] DOI: 10.1080/00927879808826342 · Zbl 0907.20052 · doi:10.1080/00927879808826342
[3] Frobenius, S.-B. Preuss Akad. Berlin pp 1324– (1901)
[4] DOI: 10.1112/plms/s1-33.1.257 · JFM 32.0139.02 · doi:10.1112/plms/s1-33.1.257
[5] DOI: 10.1016/S0022-4049(01)00062-7 · Zbl 0997.20023 · doi:10.1016/S0022-4049(01)00062-7
[6] DOI: 10.1007/BF01109806 · Zbl 0157.35503 · doi:10.1007/BF01109806
[7] Wang, Bull. Austral. Math. Soc. 65 pp 467– (2000)
[8] DOI: 10.1007/s000130050317 · Zbl 0929.20015 · doi:10.1007/s000130050317
[9] Huppert, Endliche Gruppen I (1983) · Zbl 0217.07201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.