×

Relic gravitational waves and CMB polarization in the accelerating universe. (English) Zbl 1153.85003

Summary: We briefly present our work on relic gravitational waves (RGW) and the CMB polarization in the accelerating universe. The spectrum of RGW has been obtained, showing the influence of dark energy. Compared with those from non-accelerating models, the shape of the spectrum is approximately similar, nevertheless, the amplitude of RGW now acquires a suppressing factor of the ratio of matter over dark energy \(\propto\Omega_m/\Omega_\Lambda\sim 0.4\) over almost the whole range of frequencies. The RGW Spectrum is then used as the source to calculate the spectra of CMB polarization. By using two half-Gaussian functions as an approximation to the visibility function during the photon decoupling, both the “electric” and “magnetic” spectra have been analytically derived and they are quite close to those obtained numerically. Several physical elements that affect the spectra have been examined, such as the decoupling process, inflation, dark energy, the baryons, etc.

MSC:

85A40 Astrophysical cosmology
85A25 Radiative transfer in astronomy and astrophysics
83C35 Gravitational waves

References:

[1] DOI: 10.1016/0370-2693(82)90641-4 · doi:10.1016/0370-2693(82)90641-4
[2] DOI: 10.1016/0370-2693(83)91322-9 · doi:10.1016/0370-2693(83)91322-9
[3] DOI: 10.1016/0550-3213(84)90157-3 · doi:10.1016/0550-3213(84)90157-3
[4] DOI: 10.1016/0550-3213(86)90494-3 · doi:10.1016/0550-3213(86)90494-3
[5] DOI: 10.1103/PhysRevD.37.2078 · doi:10.1103/PhysRevD.37.2078
[6] DOI: 10.1103/PhysRevD.42.453 · doi:10.1103/PhysRevD.42.453
[7] DOI: 10.1111/j.1749-6632.1977.tb37064.x · doi:10.1111/j.1749-6632.1977.tb37064.x
[8] DOI: 10.1093/mnras/191.2.207 · doi:10.1093/mnras/191.2.207
[9] DOI: 10.1093/mnras/202.4.1169 · doi:10.1093/mnras/202.4.1169
[10] DOI: 10.1086/184362 · doi:10.1086/184362
[11] DOI: 10.1093/mnras/226.3.655 · doi:10.1093/mnras/226.3.655
[12] DOI: 10.1093/mnras/191.2.207 · doi:10.1093/mnras/191.2.207
[13] Polnarev A., Sov. Astron. 29 pp 6–
[14] DOI: 10.1093/mnras/266.1.L21 · doi:10.1093/mnras/266.1.L21
[15] DOI: 10.1086/305312 · doi:10.1086/305312
[16] Harari D., Phys. Lett. B 310 pp 96–
[17] DOI: 10.1103/PhysRevD.52.3276 · doi:10.1103/PhysRevD.52.3276
[18] DOI: 10.1086/175717 · doi:10.1086/175717
[19] DOI: 10.1006/aphy.1996.0020 · doi:10.1006/aphy.1996.0020
[20] DOI: 10.1103/PhysRevD.55.7368 · doi:10.1103/PhysRevD.55.7368
[21] DOI: 10.1086/187082 · doi:10.1086/187082
[22] DOI: 10.1103/PhysRevLett.73.2390 · doi:10.1103/PhysRevLett.73.2390
[23] DOI: 10.1103/PhysRevD.52.R5402 · doi:10.1103/PhysRevD.52.R5402
[24] Seljak U., Phys. Rev. Lett. 28 pp 2054–
[25] Hu W., Phys. Rev. D 56 pp 597–
[26] Ni W. T., Chin. Phys. Lett. 22 pp 33–
[27] DOI: 10.1142/S0218271805007139 · Zbl 1083.83502 · doi:10.1142/S0218271805007139
[28] DOI: 10.1088/0264-9381/14/6/009 · doi:10.1088/0264-9381/14/6/009
[29] Grishchuk L., Lecture Notes Physics 562 pp 164– (2001)
[30] DOI: 10.1088/0264-9381/22/7/011 · Zbl 1064.83079 · doi:10.1088/0264-9381/22/7/011
[31] Zhang Y., Chin. Phys. Lett. 22 pp 1817–
[32] DOI: 10.1088/0264-9381/23/11/007 · Zbl 1104.83022 · doi:10.1088/0264-9381/23/11/007
[33] DOI: 10.1086/377226 · doi:10.1086/377226
[34] DOI: 10.1086/513700 · doi:10.1086/513700
[35] DOI: 10.1103/PhysRevLett.94.181103 · doi:10.1103/PhysRevLett.94.181103
[36] DOI: 10.1103/PhysRevLett.95.221101 · doi:10.1103/PhysRevLett.95.221101
[37] DOI: 10.1016/S0370-1573(99)00102-7 · doi:10.1016/S0370-1573(99)00102-7
[38] DOI: 10.1103/PhysRevD.48.647 · doi:10.1103/PhysRevD.48.647
[39] DOI: 10.1103/PhysRevD.50.6262 · doi:10.1103/PhysRevD.50.6262
[40] DOI: 10.1088/0264-9381/21/7/004 · Zbl 1054.83045 · doi:10.1088/0264-9381/21/7/004
[41] DOI: 10.1088/0264-9381/21/12/015 · Zbl 1061.83076 · doi:10.1088/0264-9381/21/12/015
[42] DOI: 10.1088/0264-9381/21/23/016 · Zbl 1064.83017 · doi:10.1088/0264-9381/21/23/016
[43] DOI: 10.1103/PhysRevD.74.043503 · doi:10.1103/PhysRevD.74.043503
[44] DOI: 10.1103/PhysRevD.77.104016 · doi:10.1103/PhysRevD.77.104016
[45] DOI: 10.1103/PhysRevD.69.023503 · doi:10.1103/PhysRevD.69.023503
[46] DOI: 10.1103/PhysRevD.72.088302 · doi:10.1103/PhysRevD.72.088302
[47] DOI: 10.1103/PhysRevD.73.123515 · doi:10.1103/PhysRevD.73.123515
[48] DOI: 10.1103/PhysRevD.75.104009 · doi:10.1103/PhysRevD.75.104009
[49] Chandrasekhar S., Radiative Transfer (1960)
[50] Zhang Y., A&A 29 pp 250–
[51] DOI: 10.1086/149628 · doi:10.1086/149628
[52] Jones B., Astron. Astrophys. 149 pp 144–
[53] DOI: 10.1086/175624 · doi:10.1086/175624
[54] DOI: 10.1016/j.aop.2005.03.005 · Zbl 1075.83017 · doi:10.1016/j.aop.2005.03.005
[55] DOI: 10.1103/PhysRevD.74.083006 · doi:10.1103/PhysRevD.74.083006
[56] DOI: 10.1086/377228 · doi:10.1086/377228
[57] DOI: 10.1086/177793 · doi:10.1086/177793
[58] Baskaran D., Mon. Not. R. Astron. Soc. 370 pp 799–
[59] DOI: 10.1142/S0217751X06033076 · Zbl 1101.83316 · doi:10.1142/S0217751X06033076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.