×

Random distributions of initial porosity trigger regular necking patterns at high strain rates. (English) Zbl 1402.74033

Summary: At high strain rates, the fragmentation of expanding structures of ductile materials, in general, starts by the localization of plastic deformation in multiple necks. Two distinct mechanisms have been proposed to explain multiple necking and fragmentation process in ductile materials. One view is that the necking pattern is related to the distribution of material properties and defects. The second view is that it is due to the activation of specific instability modes of the structure. Following this, we investigate the emergence of necking patterns in porous ductile bars subjected to dynamic stretching at strain rates varying from \(10^3 s^{-1}\) to \(0.5\times 10^5 s^{-1}\) using finite-element calculations and linear stability analysis. In the calculations, the initial porosity (representative of the material defects) varies randomly along the bar. The computations revealed that, while the random distribution of initial porosity triggers the necking pattern, it barely affects the average neck spacing, especially, at higher strain rates. The average neck spacings obtained from the calculations are in close agreement with the predictions of the linear stability analysis. Our results also reveal that the necking pattern does not begin when the Considère condition is reached but is significantly delayed due to the stabilizing effect of inertia.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Mott, NF; Linfoot, EH, \(A theory of fragmentation\). AC3348. London, UK: Ministry of Supply, (1943)
[2] Mott, NF, \(Fragmentation of H. E. shells: a theoretical formula for the distribution of weights of fragments\). AC3642. London, UK: Ministry of Supply, (1943)
[3] Mott, NF, \(A theory of the fragmentation of shells and bombs\). AC4035. London, UK: Ministry of Supply, (1943)
[4] Mott, NF, \(Fragmentation of shell casings and the theory of rupture in metals\). AC4613. London, UK: Ministry of Supply, (1943)
[5] Mott, NF, \(A theory of fragmentation. Application to wire wound bombs such as the American 20 lb. F\). AC6338. London, UK: Ministry of Supply, (1944)
[6] Mott, NF; Wilkinson, JH; Wise, TH, \(Fragmentation of service projectiles\). AC6338. London, UK: Ministry of Supply, (1944)
[7] Mott, NF, Fragmentation of shell cases, Proc. R. Soc. A, 189, 300-308, (1947) · doi:10.1098/rspa.1947.0042
[8] Grady, D., \(Fragmentation of rings and shells the legacy of N. F. Mott\), (2006), Springer
[9] Grady, DE; Kipp, ME; Benson, DA, Energy and statistical effects in the dynamic fragmentation of metal rings. In \(Mechanical properties at high strain rates\) (ed. J Harding), pp. 315-320. Bristol, UK: Institute of Physics, (1984)
[10] Kipp, ME; Grady, DE, Dynamic fracture growth and interaction in one dimension, J. Mech. Phys. Solids, 33, 399-415, (1985) · doi:10.1016/0022-5096(85)90036-5
[11] Grady, D., Fragmentation of expanding cylinders and the statistical theory of N. F. Mott. In \(Shock compression of condensed matter - 2001\) (eds MD Furnish, NN Thadhani, Y Horie), pp. 799-802. College Park, MD: American Institute of Physics, (2002)
[12] Zhang, H.; Ravi-Chandar, K., On the dynamics of necking and fragmentation. I. Real-time and post-mortem observations in Al 6061-O, Int. J. Fract., 142, 183-217, (2006) · doi:10.1007/s10704-006-9024-7
[13] Zhang, H.; Ravi-Chandar, K., On the dynamics of necking and fragmentation - II. Effect of material properties geometrical constraints and absolute size, Int. J. Fract., 150, 3-36, (2008) · Zbl 1419.74037 · doi:10.1007/s10704-008-9233-3
[14] Zhang, H.; Ravi-Chandar, K., On the dynamics of localization and fragmentation. IV. Expansion of Al 6061-O tubes, Int. J. Fract., 163, 41-65, (2010) · Zbl 1426.74025 · doi:10.1007/s10704-009-9441-5
[15] Ravi-Chandar, K.; Triantafyllidis, N., Dynamic stability of a bar under high loading rate: response to local perturbations, Int. J. Solids Struct., 58, 301-308, (2015) · doi:10.1016/j.ijsolstr.2014.09.015
[16] Dequiedt, JL, Statistics of dynamic fragmentation for a necking instability, Int. J. Solids Struct., 32-44, 107-120, (2015) · doi:10.1016/j.ijsolstr.2015.06.028
[17] Fressengeas, C.; Molinari, A., Inertia and thermal effects on the localization of plastic flow, Acta Metall., 33, 387-396, (1985) · doi:10.1016/0001-6160(85)90081-1
[18] Fressengeas, C.; Molinari, A., Fragmentation of rapidly stretching sheets, Eur. J. Mech. A Solids, 13, 251-268, (1994) · Zbl 0803.73038
[19] Mercier, S.; Molinari, A., Predictions of bifurcations and instabilities during dynamic extensions, Int. J. Solids Struct., 40, 1995-2016, (2003) · Zbl 1032.74032 · doi:10.1016/S0020-7683(03)00020-9
[20] Mercier, S.; Molinari, A., Analysis of multiple necking in rings under rapid radial expansion, Int. J. Impact Eng., 30, 403-419, (2004) · doi:10.1016/S0734-743X(03)00063-0
[21] Mercier, S.; Granier, N.; Molinari, A.; Llorca, F.; Buy, F., Multiple necking during the dynamic expansion of hemispherical metallic shells, from experiments to modelling, J. Mech. Phys. Solids, 58, 955-982, (2010) · Zbl 1244.74031 · doi:10.1016/j.jmps.2010.05.001
[22] El Maï, S.; Mercier, S.; Petit, J.; Molinari, A., An extension of the linear stability analysis for the prediction of multiple necking during dynamic extension of round bar, Int. J. Solids Struct., 51, 3491-3507, (2014) · doi:10.1016/j.ijsolstr.2014.05.019
[23] Sørensen, NJ; Freund, LB, Dynamic bifurcation during high-rate planar extension of a thin rectangular block, Eur. J. Mech. A Solids, 17, 709-724, (1998) · Zbl 0933.74036 · doi:10.1016/S0997-7538(98)80001-6
[24] Shenoy, VB; Freund, LB, Necking bifurcations during high strain rate extension, J. Mech. Phys. Solids, 47, 2209-2233, (1999) · Zbl 0969.74034 · doi:10.1016/S0022-5096(99)00031-9
[25] Zhou, F.; Molinari, JF; Ramesh, KT, An elasto-visco-plastic analysis of ductile expanding ring, Int. J. Impact Eng., 33, 880-891, (2006) · doi:10.1016/j.ijimpeng.2006.09.070
[26] Rodríguez-Martínez, JA; Vadillo, G.; Fernández-Sáez, J.; Molinari, A., Identification of the critical wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates, J. Mech. Phys. Solids, 61, 1357-1376, (2013) · doi:10.1016/j.jmps.2013.02.003
[27] Zaera, R.; Rodríguez-Martínez, JA; Vadillo, G.; Fernández-Sáez, J., Dynamic necking in materials with strain induced martensitic transformation, J. Mech. Phys. Solids, 64, 316-337, (2014) · doi:10.1016/j.jmps.2013.11.006
[28] Guduru, PR; Freund, LB, The dynamics of multiple neck formation and fragmentation in high rate extension of ductile materials, Int. J. Solids Struct., 39, 5615-5632, (2002) · Zbl 1087.74623 · doi:10.1016/S0020-7683(02)00367-0
[29] Gurson, AL, Plastic flow and fracture behavior of ductile materials, incorporating void nucleation, growth, and interaction. PhD thesis, Brown University, Providence, RI, (1975)
[30] Tvergaard, V., Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389-407, (1981) · doi:10.1007/BF00036191
[31] Tvergaard, V., On localization in ductile materials containing spherical voids, Int. J. Fract., 18, 237-252, (1982) · doi:10.1007/BF00015686
[32] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157-169, (1984) · doi:10.1016/0001-6160(84)90213-X
[33] Srivastava, A.; Ponson, L.; Osovski, S.; Bouchaud, E.; Tvergaard, V.; Needleman, A., Effect of inclusion density on ductile fracture toughness and roughness, J. Mech. Phys. Solids, 63, 62-79, (2014) · doi:10.1016/j.jmps.2013.10.003
[34] Bridgman, PW, \(Studies in large plastic flow and fracture, with special emphasis on the effects of hydrostatic pressure\), 1, (1952), McGraw-Hill Book Company · Zbl 0049.25606
[35] Vaz-Romero, A.; Rodríguez-Martínez, JA; Mercier, S.; Molinari, A., Multiple necking pattern in nonlinear elastic bars subjected to dynamic stretching: the role of defects and inertia, Int. J. Solids Struct., 125, 232-243, (2017) · doi:10.1016/j.ijsolstr.2017.07.001
[36] Knoche, P.; Needleman, A., The effect of size on the ductility of dynamically loaded tensile bars, Eur. J. Mech. A Solids, 12, 585-601, (1993) · Zbl 0800.73319
[37] Rodríguez-Martínez, JA; Molinari, A.; Zaera, R.; Vadillo, G.; Fernández-Sáez, J., The critical neck spacing in ductile plates subjected to dynamic biaxial loading: on the interplay between loading path and inertia effects, Int. J. Solids Struct., 108, 74-84, (2017) · doi:10.1016/j.ijsolstr.2016.11.007
[38] Osovski, S.; Srivastava, A.; Ponson, L.; Bouchaud, E.; Tvergaard, V.; Ravi-Chandar, K.; Needleman, A., The effect of loading rate on ductile fracture toughness and fracture surface roughness, J. Mech. Phys. Solids, 76, 20-46, (2015) · doi:10.1016/j.jmps.2014.11.007
[39] Osovski, S.; Srivastava, A.; Williams, J.; Needleman, A., Grain boundary crack growth in metastable titanium \(β\) alloys, Acta. Mater., 82, 167-178, (2015) · doi:10.1016/j.actamat.2014.08.062
[40] Srivastava, A.; Osovski, S.; Needleman, A., Engineering the crack path by controlling the microstructure, J. Mech. Phys. Solids, 100, 1-20, (2017) · doi:10.1016/j.jmps.2016.12.006
[41] Rusinek, A.; Zaera, R., Finite element simulation of steel ring fragmentation under radial expansion, Int. J. Impact Eng., 34, 799-822, (2007) · doi:10.1016/j.ijimpeng.2006.01.003
[42] Grady, DE; Kipp, ME, Mechanisms of dynamic fragmentation: factors governing fragment size, Mech. Mater., 4, 311-320, (1985) · doi:10.1016/0167-6636(85)90028-6
[43] Altynova, M.; Hu, X.; Daehn, GS, Increased ductility in high velocity electromagnetic ring expansion, Metall. Trans. A, 27, 1837-1844, (1996) · doi:10.1007/BF02651933
[44] Grady, DE; Olsen, ML, A statistics and energy based theory of dynamic fragmentation, Int. J. Impact Eng., 29, 293-306, (2003) · doi:10.1016/j.ijimpeng.2003.09.026
[45] Petit, J.; Jeanclaude, V.; Fressengeas, C., Breakup of copper shaped-charge jets: experiments, numerical simulations, and analytical modeling, J. Appl. Phys., 98, 123521, (2005) · doi:10.1063/1.2141647
[46] Grady, DE; Benson, DA, Fragmentation of metal rings by electromagnetic loading, Exp. Mech., 12, 393-400, (1983) · doi:10.1007/BF02330054
[47] Sørensen, NJ; Freund, LB, Unstable neck formation in a ductile ring subjected to impulsive radial loading, Int. J. Solids Struct., 37, 2265-2283, (2000) · Zbl 0991.74061 · doi:10.1016/S0020-7683(98)00315-1
[48] Molinari, A.; Mercier, S., Micromechanical modelling of porous materials under dynamic loading, J. Mech. Phys. Solids, 49, 1497-1516, (2001) · Zbl 0989.74008 · doi:10.1016/S0022-5096(01)00003-5
[49] Sartori, C.; Mercier, S.; Jacques, N.; Molinari, A., Constitutive behavior of porous ductile materials accounting for micro-inertia and void shape, Mech. Mater., 80B, 324-339, (2015) · doi:10.1016/j.mechmat.2013.12.006
[50] Jacques, N.; Mercier, S.; Molinari, A., A constitutive model for porous solids taking into account microscale inertia and progressive void nucleation, Mech. Mater., 80B, 311-323, (2015) · doi:10.1016/j.mechmat.2014.01.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.