×

Equivalence of one-dimensional second-order linear finite difference operators. (English) Zbl 1420.47011

The authors consider the equivalence problems for second order linear difference equations associated with the operators \[ {\mathcal L}:=a_n{\mathbf S}^2+b_n{\mathbf S}+c_n, \quad \widehat{{\mathcal L}}:=\widehat{a}_n{\mathbf S}^2+\widehat{b}_n{\mathbf S}+\widehat{c}_n, \] where \({\mathbf S}\) is the forward shift operator \({\mathbf S}(u_n)=u_{{\mathbf S}(n)}=u_{n+1}\), in the context of the theory of equivariant moving frames [M. Fels and P. J. Olver, Acta Appl. Math. 55, No. 2, 127–208 (1999; Zbl 0937.53013)]. The authors provide criteria for the direct equivalence problem \[ {\mathcal L}[u_n]=\widehat{{\mathcal L}}[\widehat{u}_n], \] the gauge (or eigenvalue) equivalence problem \[ {\mathcal L}[u_n]=\lambda u_n, \quad \widehat{{\mathcal L}}[\widehat{u}_n]=\lambda\widehat{u}_n, \] and the projective equivalence problem \[ {\mathcal L}[u_n]=0, \quad \widehat{{\mathcal L}}[\widehat{u}_n]=0. \]

MSC:

47B39 Linear difference operators
53A55 Differential invariants (local theory), geometric objects
58E40 Variational aspects of group actions in infinite-dimensional spaces
39A12 Discrete version of topics in analysis

Citations:

Zbl 0937.53013
Full Text: DOI

References:

[1] DOI: 10.1088/0143-0807/25/4/006 · Zbl 1073.82625 · doi:10.1088/0143-0807/25/4/006
[2] DOI: 10.1007/s10208-005-0206-x · Zbl 1183.58016 · doi:10.1007/s10208-005-0206-x
[3] DOI: 10.1023/A:1006195823000 · Zbl 0937.53013 · doi:10.1023/A:1006195823000
[4] DOI: 10.1137/1.9781611970135 · doi:10.1137/1.9781611970135
[5] DOI: 10.1111/j.1467-9590.2011.00522.x · Zbl 1332.37047 · doi:10.1111/j.1467-9590.2011.00522.x
[6] DOI: 10.1111/j.1467-9590.2012.00566.x · Zbl 1308.37030 · doi:10.1111/j.1467-9590.2012.00566.x
[7] DOI: 10.1142/S0219467816500091 · doi:10.1142/S0219467816500091
[8] DOI: 10.1007/s10851-013-0454-3 · Zbl 1361.68291 · doi:10.1007/s10851-013-0454-3
[9] DOI: 10.1017/CBO9781139016988 · Zbl 1332.39001 · doi:10.1017/CBO9781139016988
[10] Kamran N., Mem. Cl. Sci. Acad. Roy. Belg 7 pp 45– (1989)
[11] DOI: 10.1137/0520077 · Zbl 0715.47032 · doi:10.1137/0520077
[12] DOI: 10.1070/RD2004v009n03ABEH000277 · Zbl 1068.65092 · doi:10.1070/RD2004v009n03ABEH000277
[13] DOI: 10.1023/A:1022993616247 · Zbl 1034.53015 · doi:10.1023/A:1022993616247
[14] DOI: 10.1017/CBO9780511844621 · doi:10.1017/CBO9780511844621
[15] Mansfield E.L., Discrete moving frames on lattice varieties and lattice based multispaces, Preprint (2015) · Zbl 1390.14101
[16] DOI: 10.1134/S156035471004009X · Zbl 1229.22018 · doi:10.1134/S156035471004009X
[17] DOI: 10.1017/CBO9780511609565 · doi:10.1017/CBO9780511609565
[18] DOI: 10.1017/CBO9780511623660 · doi:10.1017/CBO9780511623660
[19] DOI: 10.1007/s002000000053 · Zbl 0982.65135 · doi:10.1007/s002000000053
[20] DOI: 10.1088/1751-8113/41/34/344017 · Zbl 1146.53040 · doi:10.1088/1751-8113/41/34/344017
[21] DOI: 10.1007/s00025-011-0153-6 · Zbl 1254.22014 · doi:10.1007/s00025-011-0153-6
[22] DOI: 10.4153/CJM-2008-057-0 · Zbl 1160.53006 · doi:10.4153/CJM-2008-057-0
[23] DOI: 10.1016/j.aim.2009.06.016 · Zbl 1194.58018 · doi:10.1016/j.aim.2009.06.016
[24] Olver P.J., Recursive moving frames for Lie pseudo-groups (2015) · Zbl 1160.53006
[25] DOI: 10.1080/10236198.2012.685470 · Zbl 1267.65111 · doi:10.1080/10236198.2012.685470
[26] DOI: 10.1007/s10440-011-9638-2 · Zbl 1251.49048 · doi:10.1007/s10440-011-9638-2
[27] DOI: 10.1017/fms.2015.24 · Zbl 1329.35031 · doi:10.1017/fms.2015.24
[28] Thompson R., Group foliation of finite difference equations (2015)
[29] Valiquette F., Symmetry Integrability Geom. Methods Appl. 9 pp 029– (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.