×

Cutwidth of triangular grids. (English) Zbl 1297.05206

Summary: When the vertices of an \(n\)-vertex graph \(G\) are numbered by the integers 1 through \(n\), the length of an edge is the difference between the numbers on its endpoints. Two edges overlap if the larger of their lower numbers is less than the smaller of their upper numbers. The bandwidth of \(G\) is the minimum, over all numberings, of the maximum length of an edge. The cutwidth of \(G\) is the minimum, over all numberings, of the maximum number of pairwise overlapping edges. The bandwidth of triangular grids was determined by R. Hochberg et al. [ibid. 138, No. 1–3, 261–265 (1995; Zbl 0823.05048)]. We show that the cutwidth of the triangular grid with side-length \(\ell\) is \(2\ell\).

MSC:

05C78 Graph labelling (graceful graphs, bandwidth, etc.)

Citations:

Zbl 0823.05048
Full Text: DOI

References:

[1] Bezrukov, S. L.; Chavez, J. D.; Harper, L. H.; Röttger, M.; Schroeder, U. P., The congestion of \(n\)-cube layout on a rectangular grid, Discrete Math., 213, 13-19 (2000) · Zbl 0953.68115
[2] Bondy, J. A.; Murty, U. S.R., Graph Theory (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1134.05001
[3] Chinn, P. Z.; Chvátalová, J.; Dewdney, A. K.; Gibbs, N. E., The bandwidth problem for graphs and matrices—a survey, J. Graph Theory, 6, 223-254 (1982) · Zbl 0494.05057
[4] Chung, F. R.K., Labelings of graphs, (Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory, Vol. 3 (1988)), 151-168 · Zbl 0656.05058
[5] Chvátalová, J., Optimal labeling of a product of two paths, Discrete Math., 11, 249-253 (1975) · Zbl 0299.05113
[6] Diaz, J.; Petit, J.; Serna, M., A survey of graph layout problems, ACM Comput. Surv., 34, 313-356 (2002)
[7] Gurari, E.; Sudborough, I. H., Improved dynamic programming algorithms for bandwidth minimization and the min cut linear arrangement problem, J. Algorithms, 5, 531-546 (1984) · Zbl 0556.68012
[8] Harper, L. H., Optimal numbering and isoperimetric problems on graphs, J. Combin. Theory, 1, 3, 385-393 (1966) · Zbl 0158.20802
[9] Hochberg, R.; McDiarmid, C.; Saks, M., On the bandwidth of triangulated triangles, Discrete Math., 138, 261-265 (1995) · Zbl 0823.05048
[10] Li, Q.; Tao, M.; Shen, Y., The bandwidth of torus grid graphs \(C_m \times C_n\), J. China Univ. Sci. Technol., 11, 1, 1-16 (1981)
[11] Lin, Y.; Li, X.; Yang, A., A degree sequence method for the cutwidth problem of graphs, Appl. Math. J. Chinese Univ. Ser. B, 17, 2, 125-134 (2002) · Zbl 1004.05052
[12] Lin, L.; Lin, Y., Cutwidth of iterated caterpillars, RAIRO Theor. Inform. Appl., 47, 2, 181-193 (2013) · Zbl 1266.05140
[13] Liu, H.; Yuan, J., The cutwidth problem for graphs, Appl. Math. J. Chinese Univ. Ser. A, 10, 3, 339-348 (1995) · Zbl 0839.05082
[14] Miller, Z., Graph layouts, (Michaels, J.; Rosen, K., Applications of Discrete Mathematics (1991), McGraw-Hill), 365-393
[15] Miller, Z.; Sudborogh, I. H., A polynomial algorithm for recognizing bounded cutwidth in hypergraphs, Math. Syst. Theory, 24, 1, 11-40 (1991) · Zbl 0717.68047
[16] Rolin, J.; Sykora, O.; Vrt’o, I., Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes, Lecture Notes in Comput. Sci., 1017, 252-264 (1995) · Zbl 1533.68267
[17] Vrt’o, I., Cutwidth of the \(r\)-dimensional mesh of \(d\)-ary trees, RAIRO Theor. Inform. Appl., 34, 6, 515-519 (2000) · Zbl 0976.05059
[18] Yannakakis, M., A polynomial algorithm for the min-cut arrangement of trees, J. ACM, 32, 4, 950-988 (1985) · Zbl 0633.68063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.