×

Strictly pseudoconvex domains in \({\mathbb{C}}^ n\). (English) Zbl 0546.32008

Bull. Am. Math. Soc., new Ser. 8, 125-322 (1983) and The mathematical heritage of Henri Poincaré, Proc. Symp. Pure Math. 39, Part 1, Bloomington/Indiana 1980, 189-386 (1983).
[This article was published twice, the second time in the book Zbl 0512.00008.]
These long lecture notes on geometry and analysis on strictly pseudoconvex domains in \({\mathbb{C}}^ n\) cover essentially the part of the theory which is closely related with PDE and differential geometry. The first chapters give an exposition of fundamental facts about elliptic partial differential equations, pseudodifferential operators, Fourier integral operators, elementary differential geometry and the heat equation. The following chapters are devoted to strictly pseudoconvex domains with real-analytic boundaries. Chapter 7 begins with a study of the \({\bar\partial }_ b\)-equation on the Heisenberg group and of the \({\bar\partial }\)-Neumann problem on the Siegel domain \(\{Im z_{n+1}>| z_ 1|^ 2+...+| z_ n|^ 2\}\subset {\mathbb{C}}^{n+1};\) the results of Folland and Stein for general strictly pseudoconvex domains are sketched. Chapter 8 (”Ellipsoids and the method of reflections”) presents Fefferman’s result on continuation up to the boundary of biholomorphic mappings of strictly pseudoconvex domains and theorems of Webster for domains with real algebraic boundaries. Chapters 9 and 10 are devoted to Moser’s normal form and Chern-Moser invariants. The last two chapters are devoted to the complex Monge-Ampère equation, Fefferman’s chains and light rays over the boundary, and the asymptotic expansion of the Bergman kernel.
The main theme of these notes is the analogy between strongly pseudoconvex domains and Riemannian manifolds, Bergman kernel and heat kernel,... This is perhaps the reason why other tools of analysis in strongly pseudoconvex domains, especially integral formulas for \({\bar\partial }\) and \({\bar\partial }_ b\), are never mentioned in these notes, even in the bibliography. Recent work of I. Lieb and R. M. Range [Math. Ann. 225, 221-251 (1983; Zbl 0504.32015); Math. Ann. 266, 449-456 (1984; Zbl 0513.32008); Bull. Am. Math. Soc. 11, 355- 358 (1984)] has shown that these tools can also be applied to the \({\bar\partial }\)-Neumann and related problems.
Reviewer: G.Roos

MSC:

32T99 Pseudoconvex domains
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
35K05 Heat equation
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
32V40 Real submanifolds in complex manifolds
32D15 Continuation of analytic objects in several complex variables
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
Full Text: DOI

References:

[1] V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. V. I. Arnol\(^{\prime}\)d, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60.
[2] Steve Bell and Ewa Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283 – 289. · Zbl 0411.32010 · doi:10.1007/BF01418930
[3] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). · Zbl 0223.53034
[4] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974 – 1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, pp. Exp. No. 9, 14 (French). · Zbl 0317.58003
[5] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123 – 164. Astérisque, No. 34-35 (French). · Zbl 0344.32010
[6] L. Boutet de Monvel, Opérateurs à coefficients polynomiaux, espace de Bargmann, et opérateurs de Toeplitz, Goulaouic-Meyer-Schwartz Seminar, 1980 – 1981, École Polytech., Palaiseau, 1981, pp. Exp. No. II bis, 6 (French). · Zbl 0479.35084
[7] D. Burns and S. Schneider, personal communication.
[8] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes. I, II, Oeuvres II, 2, 1231-1304; Oeuvres III, 2, 1217-1238.
[9] D. Catlin, Necessary conditions for subellipticity and hypoellipticity for the \partial -Neumann problem on pseudoconvex domains, in [26]. · Zbl 0467.32010
[10] Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the Monge-Ampère equation \?\?\?(\partial ²\?/\partial \?\?\partial \?\?\?)=\?(\?,\?), Comm. Pure Appl. Math. 30 (1977), no. 1, 41 – 68. · Zbl 0347.35019 · doi:10.1002/cpa.3160300104
[11] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219 – 271. · Zbl 0302.32015 · doi:10.1007/BF02392146
[12] Vladimir Grigor\(^{\prime}\)evich Boltyanskii and Izrail\(^{\prime}\) Tsudikovich Gohberg, The decomposition of figures into smaller parts, University of Chicago Press, Chicago, Ill.-London, 1980. Translated from the Russian by Henry Christoffers and Thomas P. Branson; Popular Lectures in Mathematics.
[13] John P. D’Angelo, Orders of contact of real and complex subvarieties, Illinois J. Math. 26 (1982), no. 1, 41 – 51. John P. D’Angelo, Perturbations of analytic varieties, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 127 – 132.
[14] K. Diederich and P. Pflug, Necessary conditions for hypoellipticity of the \(\bar \partial \)-problem, in [26 ]. · Zbl 0479.35067
[15] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39 – 79. · Zbl 0307.35071 · doi:10.1007/BF01405172
[16] Michael Hitrik, Lagrangian tori and spectra for non-selfadjoint operators, Séminaire: Équations aux Dérivées Partielles. 2005 – 2006, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2006, pp. Exp. No. XXIV, 16. Based on joint works with J. Sjöstrand and S. Vũ Ngá»\?c. · Zbl 1122.35088
[17] Ju. V. Egorov, Subelliptic pseudodifferential operators, Dokl. Akad. Nauk SSSR 188 (1969), 20 – 22 (Russian).
[18] Ju. V. Egorov, The canonical transformations of pseudodifferential operators, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 235 – 236 (Russian).
[19] Ju. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk 30 (1975), no. 2(182), 57 – 114 (Russian). · Zbl 0331.35054
[20] Ju. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk 30 (1975), no. 3(183), 57 – 104 (Russian). · Zbl 0331.35054
[21] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1 – 65. · Zbl 0289.32012 · doi:10.1007/BF01406845
[22] Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395 – 416. , https://doi.org/10.2307/1970945 C. Fefferman, Correction to: ”Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains” (Ann. of Math. (2) 103 (1976), no. 2, 395 – 416), Ann. of Math. (2) 104 (1976), no. 2, 393 – 394. · Zbl 0332.32018 · doi:10.2307/1970961
[23] Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131 – 262. · Zbl 0444.32013 · doi:10.1016/0001-8708(79)90025-2
[24] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. · Zbl 0247.35093
[25] G. B. Folland and E. M. Stein, Estimates for the \partial _{\?} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429 – 522. · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[26] Recent developments in several complex variables, Annals of Mathematics Studies, vol. 100, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. Edited by John E. Fornaess.
[27] Peter B. Gilkey, The index theorem and the heat equation, Publish or Perish, Inc., Boston, Mass., 1974. Notes by Jon Sacks; Mathematics Lecture Series, No. 4. · Zbl 0287.58006
[28] Herbert Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass., 1951. · Zbl 0043.18001
[29] R. Graham, to appear.
[30] V. Guillemin, Some classical theorems in spectral theory revisited, in [35]. · Zbl 0452.35093
[31] G. Hochschild and G. D. Mostow, Unipotent groups in invariant theory, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 646 – 648. · Zbl 0262.14004
[32] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147 – 171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[33] Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193 – 218. · Zbl 0164.13201 · doi:10.1007/BF02391913
[34] Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79 – 183. · Zbl 0212.46601 · doi:10.1007/BF02392052
[35] Lars Hörmander , Seminar on Singularities of Solutions of Linear Partial Differential Equations, Annals of Mathematics Studies, vol. 91, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Held at the Institute for Advanced Study, Princeton, N.J., 1977/78. · Zbl 0398.00008
[36] L. Hörmander, Subelliptic operators, in [35]. · Zbl 0446.35086
[37] Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149 – 158. · doi:10.1007/BF01419622
[38] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, New York, 1969. · Zbl 0175.48504
[39] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid 79 (1964), 450-472. · Zbl 0161.09302
[40] J. J. Kohn, Subellipticity of the \partial -Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79 – 122. · Zbl 0395.35069 · doi:10.1007/BF02395058
[41] Steven G. Krantz, Function theory of several complex variables, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics; A Wiley-Interscience Publication. · Zbl 0471.32008
[42] Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. I. An a priori estimate, Ann. of Math. (2) 115 (1982), no. 3, 451 – 500. , https://doi.org/10.2307/2007010 Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. II. A regularity theorem, Ann. of Math. (2) 116 (1982), no. 1, 1 – 64. , https://doi.org/10.2307/2007047 Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. III. An embedding theorem, Ann. of Math. (2) 116 (1982), no. 2, 249 – 330. · Zbl 0576.32033 · doi:10.2307/2007063
[43] Serge Lang, Linear algebra, Second edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971. · Zbl 0142.00101
[44] S. Lee and R. Melrose, personal communication.
[45] V. P. Maslov, Theory of perturbations and asymptotic methods, Moskov. Gos. Univ., Moscow, 1965. (Russian)
[46] Anders Melin and Johannes Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Springer, Berlin, 1975, pp. 120 – 223. Lecture Notes in Math., Vol. 459. · Zbl 0306.42007
[47] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242 – 256. · Zbl 0041.42701
[48] Jürgen Moser, Holomorphic equivalence and normal forms of hypersurfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R. I., 1975, pp. 109 – 112.
[49] Alexander Nagel and E. M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems, Mathematical Notes, vol. 24, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. · Zbl 0415.47025
[50] L. Nirenberg, A certain problem of Hans Lewy, Uspehi Mat. Nauk 29 (1974), no. 2(176), 241 – 251 (Russian). Translated from the English by Ju. V. Egorov; Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901 – 1973), I.
[51] L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), no. 3, 305 – 338. · Zbl 0436.32018 · doi:10.1002/cpa.3160330306
[52] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233 – 249. · Zbl 0211.53901
[53] D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554 – 1558. · Zbl 0402.35074
[54] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247 – 320. · Zbl 0346.35030 · doi:10.1007/BF02392419
[55] M. Sato, T. Kawai and M. Kashiwera, Microfunctions and pseudodifferential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, Berlin and New York, 1973.
[56] C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961/1962), 403 – 409. · Zbl 0112.25402
[57] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[58] Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of \? complex variables, J. Math. Soc. Japan 14 (1962), 397 – 429. · Zbl 0113.06303 · doi:10.2969/jmsj/01440397
[59] Noboru Tanaka, Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 147 – 150. · Zbl 0163.43904
[60] D. S. Tartakoff, A survey of some recent results in C [26]. · Zbl 0469.35037
[61] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, N.J., 1981. · Zbl 0453.47026
[62] François Trèves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the \overline\partial -Neumann problem, Comm. Partial Differential Equations 3 (1978), no. 6-7, 475 – 642. · Zbl 0384.35055 · doi:10.1080/03605307808820074
[63] François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. · Zbl 0453.47027
[64] S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53 – 68. · Zbl 0348.32005 · doi:10.1007/BF01390203
[65] R. Weizenböck, Über die invarianten von linearen gruppen, Acta Math. 58 (1932), 230-250.
[66] R. O. Wells Jr., The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 187 – 199. · Zbl 0496.32012
[67] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.