×

Subcritical and supercritical granular flow around an obstacle on a rough inclined plane. (English) Zbl 1514.76106

Summary: A blunt obstacle in the path of a rapid granular avalanche generates a bow shock (a jump in the avalanche thickness and velocity), a region of static grains upstream of the obstacle, and a grain-free region downstream. Here, it is shown that this interaction is qualitatively altered if the incline on which the avalanche is flowing is changed from smooth to rough. On a rough incline, the friction between the grains and the incline depends on the flow thickness and speed, which allows both rapid (supercritical) and slow (subcritical) steady uniform avalanches. For supercritical experimental flows, the material is diverted around a blunt obstacle by the formation of a bow shock and a static dead zone upstream of the obstacle. Downslope, a grain-free vacuum region forms, but, in contrast to flows on smooth beds, static levees form at the boundary between the vacuum region and the flow. In slower, subcritical, flows the flow is diverted smoothly around the dead zone and the obstacle without forming a bow shock. After the avalanche stops, signatures of the dead zone, levees and (in subcritical flows) a deeper region upslope of the obstacle are frozen into the deposit. To capture this behaviour, numerical simulations are performed with a depth-averaged avalanche model that includes frictional hysteresis and depth-averaged viscous terms, which are needed to accurately model the flowing and deposited regions. These results may be directly relevant to geophysical mass flows and snow avalanches, which flow over rough terrain and may impact barriers or other infrastructure.

MSC:

76T25 Granular flows
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
86A05 Hydrology, hydrography, oceanography

References:

[1] Arnalds, T., Sauermoser, S., Jóhannesson, T. & Grímsdóttir, H.2001 Hazard zoning for Siglufjör \(\eth\) ur. Tech. Rep. 01020. Icel. Meteorol. Office.
[2] Baker, J.L., Barker, T. & Gray, J.M.N.T.2016aA two-dimensional depth-averaged \(\mu (I)\)-rheology for dense granular avalanches. J. Fluid Mech.787, 367-395. · Zbl 1359.76310
[3] Baker, J.L., Johnson, C.G. & Gray, J.M.N.T.2016bSegregation-induced finger formation in granular free-surface flows. J. Fluid Mech.809, 168-212. · Zbl 1383.76161
[4] Barbolini, M., et al.2009 The design of avalanche protection dams – recent practical and theoretical developments. Tech. Rep. EUR 23339. European Commission.
[5] Barker, T. & Gray, J.M.N.T.2017Partial regularisation of the incompressible \(\mu (I)\)-rheology for granular flow. J. Fluid Mech.828, 5-32. · Zbl 1460.76869
[6] Barker, T., Rauter, M., Maguire, E.S.F., Johnson, C.G. & Gray, J.M.N.T.2021Coupling rheology and segregation in granular flows. J. Fluid Mech.909, A22. · Zbl 1461.76497
[7] Barker, T., Schaeffer, D.G., Bohórquez, P. & Gray, J.M.N.T.2015Well-posed and ill-posed behaviour of the \(\mu (I)\)-rheology for granular flows. J. Fluid Mech.779, 794-818. · Zbl 1360.76338
[8] Bartelt, P., Glover, J., Feistl, T., Bühler, Y. & Buser, O.2012Formation of levees and en-echelon shear planes during snow avalanche run-out. J. Glaciol.58, 980-992.
[9] Bartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y. & Buser, O.2015Modelling cohesion in snow avalanche flow. J. Glaciol.61 (229), 837-850.
[10] Bouchet, A., Naaim, M., Bellot, H. & Ousset, F.2004Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows. Ann. Glaciol.38, 30-34.
[11] Brennen, C.E., Sieck, K. & Paslaski, J.1983Hydraulic jumps in granular material flow. Powder Technol.35, 31-37.
[12] Chadwick, P.1976Continuum Mechanics: Concise Theory and Problems. George Allen & Unwin.
[13] Christen, M., Kowalski, J. & Bartelt, P.2010RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol.63, 1-14.
[14] Colombo, R.M., Guerra, G. & Monti, F.2012Modelling the dynamics of granular matter. IMA J. Appl. Math.77, 140-156. · Zbl 1251.35068
[15] Cui, X. & Gray, J.M.N.T.2013Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech.720, 314-337. · Zbl 1284.76387
[16] Cui, X., Gray, J.M.N.T. & Jóhannesson, T.2007Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res.112, F04012.
[17] Daerr, A. & Douady, S.1999Two types of avalanche behaviour in granular media. Nature399, 241-243.
[18] Drexel, A. & Macher, M.2018 Historical protection barriers as technical and cultural heritage. In International Snow Science Workshop Proceedings 2018, Innsbruck, Austria, pp. 232-236.
[19] Edwards, A.N. & Gray, J.M.N.T.2015Erosion-deposition waves in shallow granular free-surface flows. J. Fluid Mech.762, 35-67.
[20] Edwards, A.N., Russell, A., Johnson, C.G. & Gray, J.M.N.T.2019A non-monotonic friction law for hysteresis in dry granular avalanches. J. Fluid Mech.875, 1058-1095. · Zbl 1430.76476
[21] Edwards, A.N., Viroulet, S., Johnson, C.G. & Gray, J.M.N.T.2021Erosion-deposition dynamics and long distance propagation of granular avalanches. J. Fluid Mech.915, A9. · Zbl 1461.76499
[22] Edwards, A.N., Viroulet, S., Kokelaar, B.P. & Gray, J.M.N.T.2017Formation of levees, troughs and elevated channels by avalanches on erodible slopes. J. Fluid Mech.823, 278-315. · Zbl 1415.76709
[23] Eglit, M.E.1983 Some mathematical models of snow avalanches. In Advances in the Mechanics and the Flow of Granular Materials (ed. M. Shahinpoor), Vol. 2, pp. 577-588. Trans. Tech. Publications and Gulf Publications Co.
[24] Faug, T., Childs, P., Wyburn, E. & Einav, I.2015Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids27, 073304.
[25] Faug, T., Naaim, M. & Naaim-Bouvet, F.2004Experimental and numerical study of granular flow and fence interaction. Ann. Glaciol.38, 135-138.
[26] Forterre, Y.2006Kapiza waves as a test for three-dimensional granular flow rheology. J. Fluid Mech.563, 123-132. · Zbl 1100.76067
[27] Forterre, Y. & Pouliquen, O.2003Long-surface-wave instability dense granular flows. J. Fluid Mech.486, 21-50. · Zbl 1156.76458
[28] 2004On dense granular flows. Eur. Phys. J. E14, 341-365.
[29] Gray, J.M.N.T. & Cui, X.2007Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech.579, 113-136. · Zbl 1175.76151
[30] Gray, J.M.N.T. & Edwards, A.N.2014A depth-averaged \(\mu (I)\)-rheology for shallow granular free-surface flows. J. Fluid Mech.755, 503-544. · Zbl 1330.76137
[31] Gray, J.M.N.T. & Kokelaar, B.P.2010Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech.652, 105-137. · Zbl 1193.76152
[32] Gray, J.M.N.T., Tai, Y.C. & Noelle, S.2003Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech.491, 161-181. · Zbl 1063.76655
[33] Gray, J.M.N.T., Wieland, M. & Hutter, K.1999Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A455, 1841-1874. · Zbl 0951.76091
[34] Grigorian, S.S., Eglit, M.E. & Iakimov, I.L.1967New statement and solution of the problem of the motion of snow avalanche. Snow, Avalanches & Glaciers. Tr. Vysokogornogo Geofizich Inst.12, 104-113.
[35] Hadeler, K.P. & Kuttler, C.1999Dynamical models for granular matter. Granul. Matter2, 9-18.
[36] Hákonardóttir, K.M. & Hogg, A.J.2005Oblique shocks in rapid granular flows. Phys. Fluids17, 0077101. · Zbl 1187.76202
[37] Hogg, A.J., Gray, J.M.N.T. & Cui, X.2005 Granular vacua. In Proceedings of the International Conference on Powders & Grains 2005 (ed. R. Garcia-Rojo, H. J. Herrmann & S. McNamara), pp. 929-933. A. A. Balkema.
[38] Hutter, K., Siegel, M., Savage, S.B. & Nohguchi, Y.1993Two-dimensional spreading of a granular avalanche down an inclined plane. Acta Mechanica100, 37-68. · Zbl 0821.73002
[39] Johnson, C.G.2020Shocking granular flows. J. Fluid Mech.890, F1. · Zbl 1460.76875
[40] Johnson, C.G. & Gray, J.M.N.T.2011Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech.675, 87-116. · Zbl 1241.76411
[41] Jop, P., Forterre, Y. & Pouliquen, O.2006A constitutive relation for dense granular flows. Nature44, 727-730.
[42] Kamrin, K. & Henann, D.L.2015Nonlocal modeling of granular flows down inclines. Soft Matter11 (1), 179-185.
[43] Kamrin, K. & Koval, G.2012Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett.108 (17), 178301.
[44] Kanellopoulos, G.2021The granular monoclinal wave: a dynamical systems survey. J. Fluid Mech.921, A6. · Zbl 1469.76137
[45] Köhler, A., Mcelwaine, J.N. & Sovilla, B.2018Geodar data and the flow regimes of snow avalanches. J. Geophys. Res.: Earth Surf.123 (6), 1272-1294.
[46] Kokelaar, B.P., Bahia, R.S., Joy, K.H., Viroulet, S. & Gray, J.M.N.T.2017Granular avalanches on the moon: mass-wasting conditions, processes and features. J. Geophys. Res.: Planets122, 1893-1925.
[47] Kurganov, A. & Tadmor, E.2000New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys.160, 241-282. · Zbl 0987.65085
[48] Lagrée, P.-Y., Staron, L. & Popinet, S.2011The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a \(\mu (I)\)-rheology. J. Fluid Mech.686, 378-408. · Zbl 1241.76413
[49] Leveque, R.J.2002Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. · Zbl 1010.65040
[50] Luong, T.H., Baker, J.L. & Einav, I.2020Spread-out and slow-down of granular flows through model forests. Granul. Matter22, 15.
[51] Mejean, S., Faug, T. & Einav, I.2017A general relation for standing normal jumps in both hydraulic and dry granular flows. J. Fluid Mech.816, 331-351. · Zbl 1383.76524
[52] Naaim, M., Eckert, N., Giraud, G., Faug, T., Chambon, G., Naaim-Bouvet, F. & Richard, D.2016Impact of climate warming on avalanche activity in French Alps and increase of proportion of wet snow avalanches. Houille Blanche59, 12-20.
[53] Naaim, M., Faug, T. & Naaim-Bouvet, F.2003Dry granular flow modelling including erosion and deposition. Surv. Geophys.24 (5), 569-585.
[54] Naaim, M., Naaim-Bouvet, F., Faug, T. & Bouchet, A.2004Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol.39 (2-3), 193-204.
[55] Olschewski, R., Bebi, P., Teich, M., Hayek, U.W. & Grêt-Regamey, A.2012Avalanche protection by forests: a choice experiment in the Swiss Alps. For. Policy Econ.17, 19-24.
[56] Pauli, N.S. & Gioia, G.2007The topography of steady sandpiles on arbitrary domains. Proc. R. Soc. A463, 1247-1258. · Zbl 1347.74023
[57] Pielmeier, C., Techel, F., Marty, C. & Stucki, T.2013 Wet snow avalanche activity in the Swiss Alps: trend analysis for mid-winter season. In International Snow Science Workshop Proceedings 2013, Grenoble, France, pp. 1240-1246.
[58] Pouliquen, O.1999Scaling laws in granular flows down rough inclined planes. Phys. Fluids11 (3), 542-548. · Zbl 1147.76477
[59] Pouliquen, O., Cassar, C., Jop, P., Forterre, Y. & Micolas, M.2006Flow of dense granular material: towards simple constitutive laws. J. Stat. Mech.2006 (07), P07020.
[60] Pouliquen, O. & Forterre, Y.2002Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech.453, 133-151. · Zbl 0987.76522
[61] Pudasaini, S.P. & Hutter, K.2007Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer.
[62] Pudasaini, S.P., Hutter, K., Hsiau, S.-S., Tai, S.-C., Wang, Y. & Katzenbach, R.2007Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys. Fluids19, 053302. · Zbl 1146.76507
[63] Rauter, M., Barker, T. & Fellin, W.2020Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput. Geotech.122, 103492.
[64] Razis, D., Edwards, A.N., Gray, J.M.N.T. & Van Der Weele, K.2014Arrested coarsening of granular roll waves. Phys. Fluids26, 123305. · Zbl 1323.76118
[65] Rocha, F.M., Johnson, C.G. & Gray, J.M.N.T.2019Self-channelisation and levee formation in monodisperse granular flows. J. Fluid Mech.876, 591-641. · Zbl 1421.76251
[66] Russell, A., Johnson, C.G., Edwards, A.N., Viroulet, S., Rocha, F.M. & Gray, J.M.N.T.2019Retrogressive failure of a static granular layer on an inclined plane. J. Fluid Mech.869, 313-340. · Zbl 1415.76718
[67] Salm, B.1993Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol.18, 221-226.
[68] Savage, S.B.1979Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech.92, 53-96. · Zbl 0398.76008
[69] Savage, S.B.1984The mechanics of rapid granular flows. Adv. Appl. Mech.24, 289-366. · Zbl 0598.76104
[70] Savage, S.B. & Hutter, K.1989The motion of a finite mass of granular material down a rough incline. J. Fluid Mech.199, 177-215. · Zbl 0659.76044
[71] Schaeffer, D.G., Barker, T., Tsuji, D., Gremaud, P., Shearer, M. & Gray, J.M.N.T.2019Constitutive relations for compressible granular flow in the inertial regime. J. Fluid Mech.874, 926-951. · Zbl 1419.76681
[72] Sneddon, I.N.1957Elements of Partial Differential Equations. McGraw-Hill. · Zbl 0077.09201
[73] Sovilla, B., Schaer, M., Kern, M. & Bartelt, P.2008Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res.113, F01010.
[74] Stavroulakis, I.P. & Tersian, S.A.2004Partial Differential Equations: An Introduction with Mathematica and Maple. World Scientific. · Zbl 0940.35001
[75] Teufelsbauer, H., Wang, Y., Chiou, M-C. & Wu, W.2009Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter11 (4), 209-220. · Zbl 1258.76185
[76] Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I. & Wu, W.2011Dem simulation of impact force exerted by granular flow on rigid structures. Acta Geotech.6 (3), 119-133.
[77] Viroulet, S., Baker, J.L., Edwards, A.N., Johnson, C.G., Gjaltema, C., Clavel, P. & Gray, J.M.N.T.2017Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech.815, 77-116. · Zbl 1383.76526
[78] Viroulet, S., Baker, J.L., Rocha, F.M., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T.2018The kinematics of bidisperse granular roll waves. J. Fluid Mech.848, 836-875. · Zbl 1404.76280
[79] Viroulet, S., Edwards, A.N., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T.2019Shedding dynamics and mass exchange by dry granular waves flowing over erodible beds. Earth Planet. Sci. Lett.523, 115700.
[80] Vreman, A.W., Al-Tarazi, M., Kuipers, J.A.M., Van Sint, M. & Bokhove, O.2007Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech.578, 233-269. · Zbl 1221.76203
[81] Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T.2012Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech.709, 543-580. · Zbl 1275.76105
[82] Zhan, L., Peng, C., Zhang, B. & Wu, W.2019Three-dimensional modeling of granular flow impact on rigid and deformable structures. Comput. Geotech.112, 257-271.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.