×

Gravity-driven granular free-surface flow around a circular cylinder. (English) Zbl 1284.76387

Summary: Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctly interpret field observations. In this paper small-scale experiments and numerical simulations are used to investigate the supercritical gravity-driven free-surface flow of a granular avalanche around a circular cylinder. Our experiments show that a very sharp bow shock wave and a stagnation point are generated in front of the cylinder. The shock standoff distance is accurately reproduced by shock-capturing numerical simulations and is approximately equal to the reciprocal of the Froude number, consistent with previous approximate results for shallow-water flows. As the grains move around the cylinder the flow expands and the pressure gradients rapidly accelerate the particles up to supercritical speeds again. The internal pressure is not strong enough to immediately push the grains into the space behind the cylinder and instead a grain-free region, or granular vacuum, forms on the lee side. For moderate upstream Froude numbers and slope inclinations, the granular vacuum closes up rapidly to form a triangular region, but on steeper slopes both experiments and numerical simulations show that the pinch-off distance moves far downstream.

MSC:

76T25 Granular flows
76-05 Experimental work for problems pertaining to fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics

References:

[1] DOI: 10.1017/S0022112089000340 · Zbl 0659.76044 · doi:10.1017/S0022112089000340
[2] Hypersonic Flow Theory (1966)
[3] DOI: 10.1017/S0022112079000525 · Zbl 0398.76008 · doi:10.1017/S0022112079000525
[4] DOI: 10.1016/j.coldregions.2007.01.007 · doi:10.1016/j.coldregions.2007.01.007
[5] Fluid Mechanics for Hydraulic Engineers (1938)
[6] Phys. Rev. Lett. 88 pp 014302– (2002)
[7] DOI: 10.1029/2003GL018172 · doi:10.1029/2003GL018172
[8] DOI: 10.1063/1.1950688 · Zbl 1187.76202 · doi:10.1063/1.1950688
[9] Snow, Avalanches & Glaciers. Tr. Vysokogornogo Geofizich. Inst. 12 pp 104– (1967)
[10] J. Fluid Mech. 453 pp 133– (2002)
[11] DOI: 10.1098/rspa.1999.0383 · Zbl 0951.76091 · doi:10.1098/rspa.1999.0383
[12] DOI: 10.1063/1.869928 · Zbl 1147.76477 · doi:10.1063/1.869928
[13] DOI: 10.1017/S0022112003005317 · Zbl 1063.76655 · doi:10.1017/S0022112003005317
[14] DOI: 10.1016/0021-9991(90)90260-8 · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[15] Herrmann, Physics of Dry Granular Media vol. 350 pp 697– (1998) · doi:10.1007/978-94-017-2653-5
[16] DOI: 10.1063/1.3505013 · doi:10.1063/1.3505013
[17] DOI: 10.1017/S002211201000011X · Zbl 1193.76152 · doi:10.1017/S002211201000011X
[18] DOI: 10.1029/2002JB002024 · doi:10.1029/2002JB002024
[19] DOI: 10.1007/s001610050075 · doi:10.1007/s001610050075
[20] DOI: 10.1029/2006JF000469 · doi:10.1029/2006JF000469
[21] DOI: 10.1017/S0022112007004843 · Zbl 1175.76151 · doi:10.1017/S0022112007004843
[22] DOI: 10.1098/rsta.1991.0039 · Zbl 0726.76059 · doi:10.1098/rsta.1991.0039
[23] J. Fluid Mech. 441 pp 1– (2001)
[24] Nelson, The High Temperature Aspects of Hypersonic Flow pp 519– (1964)
[25] J. Math. Phys. 27 pp 105– (1948) · Zbl 0034.12102 · doi:10.1002/sapm1948271105
[26] DOI: 10.1103/PhysRevLett.105.104501 · doi:10.1103/PhysRevLett.105.104501
[27] Math. Sbornik. 47 pp 271– (1959)
[28] DOI: 10.1017/S002211200600365X · Zbl 1106.76302 · doi:10.1017/S002211200600365X
[29] DOI: 10.1017/S0022112006001509 · Zbl 1100.76067 · doi:10.1017/S0022112006001509
[30] DOI: 10.1017/S0022112057000713 · doi:10.1017/S0022112057000713
[31] DOI: 10.1103/PhysRevE.78.011306 · doi:10.1103/PhysRevE.78.011306
[32] DOI: 10.1007/BF00946647 · Zbl 0477.76020 · doi:10.1007/BF00946647
[33] Finite Volume Methods for Hyperbolic Problems (2002)
[34] J. Fluid Mech. 607 pp 167– (2008)
[35] DOI: 10.1029/2007JF000854 · doi:10.1029/2007JF000854
[36] Fluid Mechanics (1959)
[37] DOI: 10.3189/002214311796405988 · doi:10.3189/002214311796405988
[38] DOI: 10.1029/2006JF000712 · doi:10.1029/2006JF000712
[39] DOI: 10.1143/JPSJ.11.439 · doi:10.1143/JPSJ.11.439
[40] Computational Fluid Dynamics (1995) · Zbl 0865.76002
[41] Methods of Mathematical Physics vol. II (1962)
[42] Geografis. Annal. Ser. A, Phys. Geograph. 83 pp 15– (2001)
[43] Supersonic Flow and Shock Waves (1948) · Zbl 0041.11302
[44] DOI: 10.1029/2011JF002185 · doi:10.1029/2011JF002185
[45] DOI: 10.1063/1.2909659 · Zbl 1182.76011 · doi:10.1063/1.2909659
[46] Geophys. Res. Lett. 25 (1998)
[47] DOI: 10.1017/jfm.2011.2 · Zbl 1241.76411 · doi:10.1017/jfm.2011.2
[48] DOI: 10.1007/PL00010908 · Zbl 1163.76433 · doi:10.1007/PL00010908
[49] DOI: 10.1017/S0022112099005467 · Zbl 0938.76588 · doi:10.1017/S0022112099005467
[50] DOI: 10.1016/0032-5910(83)85023-2 · doi:10.1016/0032-5910(83)85023-2
[51] DOI: 10.1063/1.1608937 · Zbl 1186.76565 · doi:10.1063/1.1608937
[52] DOI: 10.3189/172756401781819382 · doi:10.3189/172756401781819382
[53] DOI: 10.1017/S0022112007005113 · Zbl 1221.76203 · doi:10.1017/S0022112007005113
[54] DOI: 10.1137/S0036142997317560 · Zbl 0920.65053 · doi:10.1137/S0036142997317560
[55] DOI: 10.1016/0021-9991(74)90008-4 · Zbl 0277.76061 · doi:10.1016/0021-9991(74)90008-4
[56] DOI: 10.1029/2000JB900330 · doi:10.1029/2000JB900330
[57] DOI: 10.1007/BF00301396 · doi:10.1007/BF00301396
[58] DOI: 10.1029/97RG00426 · doi:10.1029/97RG00426
[59] Sigurdsson, Encyclopedia of Volcanoes pp 601– (2000)
[60] ASCE 116 pp 268– (1949)
[61] DOI: 10.1007/BFb0104200 · doi:10.1007/BFb0104200
[62] DOI: 10.1680/geot.1984.34.3.415 · doi:10.1680/geot.1984.34.3.415
[63] DOI: 10.3189/172756401781819166 · doi:10.3189/172756401781819166
[64] DOI: 10.1680/geot.1984.34.3.405 · doi:10.1680/geot.1984.34.3.405
[65] J. Geophys. Res. 114 pp F01010– (2008)
[66] DOI: 10.1002/esp.2155 · doi:10.1002/esp.2155
[67] DOI: 10.1143/JPSJ.8.740 · doi:10.1143/JPSJ.8.740
[68] DOI: 10.1103/PhysRevLett.81.4365 · doi:10.1103/PhysRevLett.81.4365
[69] Phys. Rev. E 70 pp 060301– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.