×

Energy-regenerative model predictive control. (English) Zbl 1395.93243

Summary: This paper presents some solution approaches to the problem of optimal energy-regenerative model predictive control for linear systems subject to stability and/or dissipativity constraints, as well as hard constraints on the state and control vectors. The problem is generally non-convex in the objective and some of the constraints, thereby resulting in a non-convex optimization problem to be solved at each time step. Multiple extended convex relaxation approaches are considered. As a result, a more conservative semi-definite programming problem is proposed to be solved at each time step. The feasibility and stability of the resulting closed-loop system are also examined. The approaches are validated using a numerical example of maximizing energy regeneration from a single degree of freedom vibrating system subject to a level-set constraint on some performance metric characterizing the quality of vibration isolation achieved by the system. The constraint is described in terms of an upper bound on the \(\mathcal L_2\)-gain of the system from the input to a vector of appropriately selected system outputs.

MSC:

93C05 Linear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93D15 Stabilization of systems by feedback
93B35 Sensitivity (robustness)
Full Text: DOI

References:

[1] Wikipedia, Energy recovery — Wikipedia, the free encyclopedia [Online; accessed 3-July-2014]. URL: 〈http://en.wikipedia.org/wiki/Energy_recovery〉, 2008.
[2] Jolly, M.; Margolis, D., Regenerative systems for vibration control, J. Vib. Acoust., 119, 2, 208-215, (1997)
[3] Jansen, L. M.; Dyke, S. J., Semiactive control strategies for mr damperscomparative study, J. Eng. Mech., 126, 8, 795-803, (2000)
[4] L. Clemen, O.M. Anubi, D. Margolis, Model predictive control of regenerative dampers with acceleration and energy harvesting trade-offs, in: 12th International Symposium on Advanced Vehicle Control, Tokyo, Japan, 2014.
[5] De Battista, H.; Puleston, P. F.; Mantz, R. J.; Christiansen, C. F., Sliding mode control of wind energy systems with doig-power efficiency and torsional dynamics optimization, IEEE Trans. Power Syst., 15, 2, 728-734, (2000)
[6] Koot, M.; Kessels, J. T.; de Jager, B.; Heemels, W.; Van den Bosch, P.; Steinbuch, M., Energy management strategies for vehicular electric power systems, IEEE Trans. Veh. Technol., 54, 3, 771-782, (2005)
[7] B. Gholami, B.W. Gordon, C. Rabbath, Uncertain nonlinear receding horizon control systems subject to non-zero computation time, in: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC׳05, IEEE, Seville, Spain, 2005, pp. 3765-3770.
[8] Garcia, C. E.; Prett, D. M.; Morari, M., Model predictive controltheory and practice—a survey, Automatica, 25, 3, 335-348, (1989) · Zbl 0685.93029
[9] Chen, H.; Allgöwer, F., A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 34, 10, 1205-1217, (1998) · Zbl 0947.93013
[10] Chen, C.; Shaw, L., On receding horizon feedback control, Automatica, 18, 3, 349-352, (1982) · Zbl 0479.93031
[11] Keerthi, S.a.; Gilbert, E. G., Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systemsstability and moving-horizon approximations, J. Optim. Theory Appl., 57, 2, 265-293, (1988) · Zbl 0622.93044
[12] Mayne, D. Q.; Michalska, H., Receding horizon control of nonlinear systems, IEEE Trans. Autom. Control, 35, 7, 814-824, (1990) · Zbl 0715.49036
[13] Camacho, E. F.; Bordons, C., Model Predictive Control, vol. 2, (2004), Springer London · Zbl 1080.93001
[14] T.J. van den Boom, T. Backx, Model Predictive Control, Lecture Notes for the Dutch Institute of Systems and Control, Winterterm, 2004.
[15] Qin, S. J.; Badgwell, T. A., A survey of industrial model predictive control technology, Control Eng. Pract., 11, 7, 733-764, (2003)
[16] De Schutter, B.; Van Den Boom, T., Model predictive control for MAX-plus-linear discrete event systems, Automatica, 37, 7, 1049-1056, (2001) · Zbl 0991.93042
[17] Camponogara, E.; Jia, D.; Krogh, B. H.; Talukdar, S., Distributed model predictive control, IEEE Control Syst., 22, 1, 44-52, (2002)
[18] Hovgaard, T. G.; Boyd, S.; Larsen, L. F.; Jørgensen, J. B., Nonconvex model predictive control for commercial refrigeration, Int. J. Control, 86, 8, 1349-1366, (2013) · Zbl 1278.93176
[19] A. Grancharova, T.A. Johansen, P. Tøndel, Computational aspects of approximate explicit nonlinear model predictive control, in: Assessment and Future Directions of Nonlinear Model Predictive Control, Springer, Berlin Heidelberg, 2007, pp. 181-192. · Zbl 1223.93030
[20] v. d. Schaft, A.; Schaft, A., L2-gain and passivity in nonlinear control, (1999), Springer-Verlag Inc. New York
[21] Boyd, S. P.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, vol. 15, (1994), SIAM · Zbl 0816.93004
[22] Milam, M. B.; Franz, R.; Hauser, J. E.; Murray, R. M., Receding horizon control of vectored thrust flight experiment, IEE Proc.—Control Theory Appl., 152, 3, 340-348, (2005)
[23] Blondel, V.; Tsitsiklis, J. N., Np-hardness of some linear control design problems, SIAM J. Control Optim., 35, 6, 2118-2127, (1997) · Zbl 0892.93050
[24] Pardalos, P. M.; Vavasis, S. A., Quadratic programming with one negative eigenvalue is NP-hard, J. Global Optim., 1, 1, 15-22, (1991) · Zbl 0755.90065
[25] Correa, R., A global algorithm for nonlinear semidefinite programming, SIAM J. Optim., 15, 1, 303-318, (2004) · Zbl 1106.90057
[26] Freund, R. W.; Jarre, F.; Vogelbusch, C. H., Nonlinear semidefinite programmingsensitivity convergence and an application in passive reduced-order modeling, Math. Programm., 109, 2-3, 581-611, (2007) · Zbl 1147.90030
[27] M. Kocvara, F. Leibfritz, M. Stingl, D. Henrion, A nonlinear sdp algorithm for static output feedback problems in complib, in: Proceedings of the 16th IFAC World Congress on Automatic Control, Prague, 2005.
[28] Coleman, T. F.; Li, Y., An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim., 6, 2, 418-445, (1996) · Zbl 0855.65063
[29] Dinh, Q. T.; Gumussoy, S.; Michiels, W.; Diehl, M., Combining convex-concave decompositions and linearization approaches for solving bmis with application to static output feedback, IEEE Trans. Autom. Control, 57, 6, 1377-1390, (2012) · Zbl 1369.90170
[30] J.-b. Thevenet, D. Noll, P. Apkarian, Nonlinear spectral sdp method for bmi-constrained problems: applications to control design, in: Proceedings ICINCO, Citeseer, 2004. · Zbl 1293.93324
[31] Q. Tran Dinh, W. Michiels, S. Gros, M. Diehl, An inner convex approximation algorithm for bmi optimization and applications in control, in: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), IEEE, 2012, pp. 3576-3581.
[32] de Oliveira Kothare, S. L.; Morari, M., Contractive model predictive control for constrained nonlinear systems, IEEE Trans. Autom. Control, 45, 6, 1053-1071, (2000) · Zbl 0976.93025
[33] Cheng, X.; Krogh, B. H., Stability-constrained model predictive control, IEEE Trans. Autom. Control, 46, 11, 1816-1820, (2001) · Zbl 1018.93008
[34] Kirk, D. E., Optimal control theory: an introduction, (2012), Courier Dover Publications
[35] Bryson, A. E., Applied optimal control: optimization estimation and control, (1975), CRC Press
[36] A. Radke, Z. Gao, A survey of state and disturbance observers for practitioners, in: American Control Conference, 2006, IEEE, Minneapolis, Minnesota, 2006, p. 6.
[37] Heemels, W. H.; Daafouz, J.; Millerioux, G., Observer-based control of discrete-time lpv systems with uncertain parameters, IEEE Trans. Autom. Control, 55, 9, 2130-2135, (2010) · Zbl 1368.93342
[38] Alessandri, A.; Baglietto, M.; Battistelli, G., Receding-horizon estimation for discrete-time linear systems, IEEE Trans. Autom. Control, 48, 3, 473-478, (2003) · Zbl 1364.93758
[39] Mayne, D. Q.; Raković, S.; Findeisen, R.; Allgöwer, F., Robust output feedback model predictive control of constrained linear systems, Automatica, 42, 7, 1217-1222, (2006) · Zbl 1116.93032
[40] Dórea, C.; Hennet, J., (a,b)-invariant polyhedral sets of linear discrete-time systems, J. Optim. Theory Appl., 103, 3, 521-542, (1999) · Zbl 0986.90023
[41] Kolmanovsky, I.; Gilbert, E. G., Theory and computation of disturbance invariant sets for discrete-time linear systems, Math. Probl. Eng., 4, 4, 317-367, (1998) · Zbl 0923.93005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.