×

Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. (English) Zbl 1333.81076

Summary: We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Bouwmeester, D., Pan, J., Mattle, K., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575-579 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[2] Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46-52 (2001) · doi:10.1038/35051009
[3] Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000) · doi:10.1103/PhysRevA.63.012305
[4] Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002) · doi:10.1103/PhysRevA.66.032307
[5] Cochrane, P.T., Milburn, G.J., Munro, W.J.: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631-2634 (1998) · Zbl 0901.47011 · doi:10.1103/PhysRevA.59.2631
[6] Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 63, 022313 (2001) · doi:10.1103/PhysRevA.64.022313
[7] Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001) · doi:10.1103/PhysRevA.64.052308
[8] Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002) · doi:10.1103/PhysRevA.65.042305
[9] Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003) · doi:10.1103/PhysRevA.68.042319
[10] Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008) · doi:10.1103/PhysRevLett.100.030503
[11] Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135-174 (2007) · doi:10.1103/RevModPhys.79.135
[12] Ralph, T.C., Pryde, G.J.: Optical quantum computation. Prog. Optics. 54, 209-269 (2009)
[13] Park, K., Jeong, H.: Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82, 062325 (2010) · Zbl 1291.81077 · doi:10.1103/PhysRevA.82.062325
[14] Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014) · doi:10.1103/PhysRevA.89.042303
[15] Jeong, H., Kim, M.S.: Purification of entangled coherent states. Quantum Inf. Comput. 2, 208-221 (2002) · Zbl 1187.81036
[16] Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015) · doi:10.1103/PhysRevA.91.012340
[17] Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2002) · doi:10.1103/PhysRevA.87.022326
[18] Rigas, J., Gühne, O., Lütkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006) · doi:10.1103/PhysRevA.73.012341
[19] Kwon, H., Jeong, H.: Violation of the Bell-Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013) · doi:10.1103/PhysRevA.88.052127
[20] van Loock, P.: Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167-200 (2011) · doi:10.1002/lpor.201000005
[21] Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley, New York (2011) · doi:10.1002/9783527635283
[22] Park, K., Lee, S.-W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012) · doi:10.1103/PhysRevA.86.062301
[23] Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013) · doi:10.1103/PhysRevA.88.022302
[24] Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid quantum information processing. http://arxiv.org/abs/1409.3719 · Zbl 1369.81006
[25] Takeda, S., Fuwa, M., Van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2014) · doi:10.1103/PhysRevLett.114.100501
[26] Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095-4098 (1999) · doi:10.1103/PhysRevA.59.4095
[27] Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004) · doi:10.1103/PhysRevLett.93.250502
[28] Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005) · doi:10.1103/PhysRevA.72.034305
[29] Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006) · doi:10.1103/PhysRevA.73.062305
[30] Shapiro, J., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007) · doi:10.1088/1367-2630/9/1/016
[31] Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010) · doi:10.1103/PhysRevA.81.043823
[32] Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, Ph: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784-786 (2007) · doi:10.1038/nature06054
[33] Jeong, H., Zavatta, A., Kang, M., Lee, S.W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564-569 (2014) · doi:10.1038/nphoton.2014.136
[34] Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973) · Zbl 1049.81683
[35] Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132-5138 (1990) · doi:10.1103/PhysRevA.41.5132
[36] Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 6771 (2001) · doi:10.1007/s003400000484
[37] Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656-4659 (1996)
[38] Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39-44 (2005) · doi:10.1038/nature03350
[39] Jeong, H., Kang, M., Kwon, H.: Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields. Opt. Commun. 337, 12-21 (2015) · doi:10.1016/j.optcom.2014.07.012
[40] Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295-3300 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.