×

Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking. (English) Zbl 1377.82046

Summary: In this letter, we show that a three-dimensional Bose-Einstein solitary wave can become stable if the dispersion law is changed from quadratic to quartic. We suggest a way to realize the quartic dispersion, using shaken optical lattices. Estimates show that the resulting solitary waves can occupy as little as \(\sim 1 / 20\)-th of the Brillouin zone in each of the three directions and contain as many as \(N = 10^3\) atoms, thus representing a fully mobile macroscopic three-dimensional object.

MSC:

82D50 Statistical mechanics of superfluids
74J35 Solitary waves in solid mechanics
81V80 Quantum optics

References:

[1] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[2] Strecker, K. E.; Partridge, G. B.; Truscott, A. G.; Hulet, R. G., Formation and propagation of matter wave soliton trains, Nature, 417, 150 (2002)
[3] Khaykovich, L.; Schreck, F.; Ferrari, G.; Bourdel, T.; Cubizolles, J.; Carr, L. D.; Castin, Y.; Salomon, C., Formation of a matter-wave bright soliton, Science, 296, 1290 (2002)
[4] Ahufinger, V.; Sanpera, A.; Pedri, P.; Santos, L.; Lewenstein, M., Creation and mobility of discrete solitons in Bose-Einstein condensates, Phys. Rev. A, 69, Article 053604 pp. (2004)
[5] Alexander, T. J.; Ostrovskaya, E. A.; Kivshar, Y. S., Self-trapped nonlinear matter waves in periodic potentials, Phys. Rev. Lett., 96, Article 040401 pp. (2006)
[6] Saito, H.; Ueda, M., Bose-Einstein droplet in free space, Phys. Rev. A, 70, Article 053610 pp. (2004)
[7] Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B. A.; Crasovan, L.-C.; Kartashov, Y. V.; Torner, L., Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice, Phys. Rev. A, 72, Article 021601 pp. (2005)
[8] Borovkova, O. V.; Kartashov, Y. V.; Torner, L.; Malomed, B. A., Bright solitons from defocusing nonlinearities, Phys. Rev. E, 84, Article 035602 pp. (2011)
[9] Vakhitov, N.; Kolokolov, A., Stationary solutions of the wave equation in the medium with nonlinearity saturation, Izv. Vuz. Radiofiz.. Izv. Vuz. Radiofiz., Sov. J. Radiophys. Quantum Electron., 16, 783 (1973)
[10] Landau, L.; Lifshitz, E., Mechanics: Volume 1, Course of Theoretical Physics Series (1976), Butterworth-Heinemann: Butterworth-Heinemann Amsterdam
[11] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62 (1972)
[12] Drazin, P. G.; Johnson, R. S., Solitons: an Introduction (1989), Cambridge University Press: Cambridge University Press New York · Zbl 0661.35001
[13] Bergé, L., Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep., 303 (1998)
[14] Donley, E. A.; Claussen, N. R.; Cornish, S. L.; Roberts, J. L.; Cornell, E. A.; Wieman, C. E., Dynamics of collapsing and exploding Bose-Einstein condensates, Nature, 412, 295 (2001)
[15] Gemelke, N.; Sarajlic, E.; Bidel, Y.; Hong, S.; Chu, S., Parametric amplification of matter waves in periodically translated optical lattices, Phys. Rev. Lett., 95, Article 170404 pp. (2005)
[16] Lignier, H.; Sias, C.; Ciampini, D.; Singh, Y.; Zenesini, A.; Morsch, O.; Arimondo, E., Dynamical control of matter-wave tunneling in periodic potentials, Phys. Rev. Lett., 99, Article 220403 pp. (2007)
[17] Struck, J.; Ölschläger, C.; Le Targat, R.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K., Quantum simulation of frustrated classical magnetism in triangular optical lattices, Science, 333, 996 (2011)
[18] Struck, J.; Ölschläger, C.; Weinberg, M.; Hauke, P.; Simonet, J.; Eckardt, A.; Lewenstein, M.; Sengstock, K.; Windpassinger, P., Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett., 108, Article 225304 pp. (2012)
[19] Parker, C. V.; Ha, L.-C.; Chin, C., Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice, Nat. Phys., 9, 769 (2013)
[20] Eiermann, B.; Anker, T.; Albiez, M.; Taglieber, M.; Treutlein, P.; Marzlin, K.-P.; Oberthaler, M. K., Bright Bose-Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett., 92, Article 230401 pp. (2004)
[21] Gustavsson, M., A quantum gas with tunable interactions in an optical lattice (2008), University of Innsbruck, Ph.D. thesis
[22] McDonald, G. D.; Kuhn, C. C.N.; Hardman, K. S.; Bennetts, S.; Everitt, P. J.; Altin, P. A.; Debs, J. E.; Close, J. D.; Robins, N. P., Bright solitonic matter-wave interferometer, Phys. Rev. Lett., 113, Article 013002 pp. (2014)
[23] Scott, R. G.; Judd, T. E.; Fromhold, T. M., Exploiting soliton decay and phase fluctuations in atom chip interferometry of Bose-Einstein condensates, Phys. Rev. Lett., 100, Article 100402 pp. (2008)
[24] Nguyen, H.; Dyke, P.; Luo, D.; Malomed, B. A.; Hulet, R. G., Collisions of matter-wave solitons, Nat. Phys., 10, 918 (2014)
[25] Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M.H.; Gardiner, S. A.; Cornish, S. L., Controlled formation and reflection of a bright solitary matter-wave, Nat. Commun., 4, 1865 (2013)
[26] Kasevich, M., Atom systems and Bose Einstein condensates for metrology and navigation, (First NASA Quantum Future Technologies Conference (2012))
[27] Hansen, S. D.; Nygaard, N.; lmer, K. M., Scattering of matter wave solitons on localized potentials (2012)
[28] Weiss, C.; Castin, Y., Creation and detection of a mesoscopic gas in a nonlocal quantum superposition, Phys. Rev. Lett., 102, Article 010403 pp. (2009)
[29] Streltsov, A. I.; Alon, O. E.; Cederbaum, L. S., Scattering of an attractive Bose-Einstein condensate from a barrier: formation of quantum superposition states, Phys. Rev. A, 80, Article 043616 pp. (2009)
[30] Helm, J. L.; Cornish, S. L.; Gardiner, S. A., Sagnac interferometry using bright matter-wave solitons, Phys. Rev. Lett., 114, Article 134101 pp. (2015)
[31] Staliunas, K.; Herrero, R.; de Valcárcel, G. J., Arresting soliton collapse in two-dimensional nonlinear Schrödinger systems via spatiotemporal modulation of the external potential, Phys. Rev. A, 75, Article 011604 pp. (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.