×

On angles between linear subspaces in \(\mathbb{R}^4\) and the singularity. (English. Russian original) Zbl 07878662

Math. Notes 115, No. 3, 414-419 (2024); translation from Mat. Zametki 115, No. 3, 450-457 (2024).
Denote \(\| \cdot \|\) the Euclidean norm in \(\mathbb R^4\). Let \(\psi(X,Y)=\| X\wedge Y\|/(\| X\|\cdot \| Y\|)\) be the angle of vectors \(X,Y\in\mathbb R^4\). A two-dimensional subspace \(B\) of \(\mathbb R^4\) is rational if it has a basis of vectors with rational components. Denote the set of rational subspaces by \(\mathfrak R_4(2)\). Let us call by the height \(H(B)\) of a subspace \(B\) the volume of the fundamental domain of the two-dimensional lattice \(B\cap\mathbb Z^4\) contained in it. For a two-dimensional subspaces \(A\) and \(B\) set \(\psi_1(A,B)=\min_{X\in A\setminus\{ 0\}, Y\in B\setminus\{ 0\}} \psi(X,Y)\). Let \(f(t)\) be an arbitrary strictly positive decreasing function on \([1,\infty)\). Then the author proves that there exists subspace \(C\) such that for every \(t\geq t_0\) we have \(0<\min_{D\in\mathfrak R_4(2), H(D)\leq t} \psi_1(C,D)<f(t)\).

MSC:

11J82 Measures of irrationality and of transcendence
11J13 Simultaneous homogeneous approximation, linear forms

References:

[1] Khintchine, A. Ya., Über eine Klasse linearer diophantischer Approximationen, Rendiconti Circ. Math. Palermo, 50, 2, 170-195, 1926 · JFM 52.0183.01 · doi:10.1007/BF03014726
[2] Jarník, V., Eine Bemerkung über diophantische Approximationen, Math. Z., 72, 1, 187-191, 1959 · Zbl 0092.27701 · doi:10.1007/BF01162948
[3] Cassels, J. W. S., An Introduction to Diophantine Approximation, 1957, New York: Cambridge Univ. Press, New York · Zbl 0077.04801
[4] Moshchevitin, N. G., Khintchine’s singular Diophantine systems and their applications, Russian Math. Surveys, 65, 3, 433-511, 2010 · Zbl 1225.11094 · doi:10.1070/RM2010v065n03ABEH004680
[5] Kleinbock, D.; Moshchevitin, N.; Weiss, D., Singular vectors on manifolds and fractals, Israel J. Math., 245, 2, 589-613, 2021 · Zbl 1530.11064 · doi:10.1007/s11856-021-2220-3
[6] German, O. N., Geometry of Diophantine exponents”, Russian Math. Surveys, 78, 2, 273-347, 2023 · Zbl 1542.11061 · doi:10.4213/rm10089e
[7] Schmidt, W. M., On heights of algebraic subspaces and diophantine approximations, Ann. of Math. (2), 85, 430-472, 1967 · Zbl 0152.03602 · doi:10.2307/1970352
[8] Joseph, E., On the approximation exponents for subspaces of \(\mathbb{R}^n\), Mosc. J. Comb. Number Theory, 11, 1, 21-35, 2022 · Zbl 1502.11078
[9] Moshchevitin, N., Über die Winkel zwischen Unterräumen, Colloq. Math., 162, 1, 143-157, 2020 · Zbl 1460.11099 · doi:10.4064/cm7885-7-2019
[10] Saxcé, N. de, Approximation Diophantienne sur la Grassmannienne, 2022
[11] Hodge, W. V. D.; Pedoe, D., Methods of Algebraic Geometry, 1994, Cambridge: Cambridge University Press, Cambridge · Zbl 0796.14003 · doi:10.1017/CBO9780511623882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.