×

TokaMaker: an open-source time-dependent Grad-Shafranov tool for the design and modeling of axisymmetric fusion devices. (English) Zbl 07833769

Summary: In this paper, we present a new static and time-dependent MagnetoHydroDynamic (MHD) equilibrium code, TokaMaker, for axisymmetric configurations of magnetized plasmas, based on the well-known Grad-Shafranov equation. This code utilizes finite element methods on an unstructured triangular grid to enable capturing accurate machine geometry and simple mesh generation from engineering-like descriptions of present and future devices. The new code is designed for ease of use without sacrificing capability and speed through a combination of Python, Fortran, and C/C++ components. A detailed description of the numerical methods of the code, including a novel formulation of the boundary conditions for free-boundary equilibria, and validation of the implementation of those methods using both analytic test cases and cross-code validation is shown. Results show expected convergence across tested polynomial degree for analytic and cross-code test cases.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

References:

[1] National Academy of Engineering and National Academies of Sciences, Engineering, and Medicine, Bringing Fusion to the U.S. Grid, the National Academies Press, Washington, DC
[2] Hsu, S. C., U.S. fusion energy development via public-private partnerships, J. Fusion Energy, 42, 1, 12, 2023
[3] Wilson, H.; Chapman, I.; Denton, T.; Morris, W.; Patel, B.; Voss, G.; Waldon, C., STEP—on the pathway to fusion commercialization, (Commercialising Fusion Energy, 2053-2563, 2020, IOP Publishing), Ch. 8
[4] Zhuang, G.; Li, G.; Li, J.; Wan, Y.; Liu, Y.; Wang, X.; Song, Y.; Chan, V.; Yang, Q.; Wan, B.; Duan, X.; Fu, P.; Xiao, B., Progress of the cfetr design, Nucl. Fusion, 59, 11, Article 112010 pp., 2019
[5] Zhang, Y.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Weber, T. R.; Stepanov, A. D.; Claveau, E. L.; Forbes, E. G.; Draper, Z. T.; Mitrani, J. M.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Cooper, C. M., Sustained neutron production from a sheared-flow stabilized z pinch, Phys. Rev. Lett., 122, Article 135001 pp., 2019
[6] Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T.; Garnier, D. T.; Granetz, R.; Gray, T. K., Overview of the sparc tokamak, J. Plasma Phys., 86, 5, Article 865860502 pp., 2020
[7] Gryaznevich, M., Experiments on ST40 at high magnetic field, Nucl. Fusion, 62, 4, Article 042008 pp., 2022
[8] Kirtley, D.; Milroy, R., Fundamental scaling of adiabatic compression of field reversed configuration thermonuclear fusion plasmas, J. Fusion Energy, 42, 2, 30, 2023
[9] Grad, H.; Rubin, H., Hydromagnetic equilibria and force-free fields, J. Nucl. Energy, 7, 3, 284-285, 1958
[10] Lao, L.; John, H. S.; Stambaugh, R.; Kellman, A.; Pfeiffer, W., Reconstruction of current profile parameters and plasma shapes in tokamaks, Nucl. Fusion, 25, 11, 1611, 1985
[11] Hofmann, F., FBT - a free-boundary tokamak equilibrium code for highly elongated and shaped plasmas, Comput. Phys. Commun., 48, 2, 207-221, 1988
[12] Lütjens, H.; Bondeson, A.; Roy, A., Axisymmetric mhd equilibrium solver with bicubic hermite elements, Comput. Phys. Commun., 69, 2, 287-298, 1992
[13] Crotinger, J. A.; LoDestro, L.; Pearlstein, L. D.; Tarditi, A.; Casper, T. A.; Hooper, E. B., CORSICA: a comprehensive simulation of toroidal magnetic-fusion devices, 3 1997, final report to the LDRD program
[14] Artaud, J.; Basiuk, V.; Imbeaux, F.; Schneider, M.; Garcia, J.; Giruzzi, G.; Huynh, P.; Aniel, T.; Albajar, F.; Ané, J.; Bécoulet, A.; Bourdelle, C.; Casati, A.; Colas, L.; Decker, J.; Dumont, R.; Eriksson, L.; Garbet, X.; Guirlet, R.; Hertout, P.; Hoang, G.; Houlberg, W.; Huysmans, G.; Joffrin, E.; Kim, S.; Köchl, F.; Lister, J.; Litaudon, X.; Maget, P.; Masset, R.; Pégourié, B.; Peysson, Y.; Thomas, P.; Tsitrone, E.; Turco, F., The CRONOS suite of codes for integrated tokamak modelling, Nucl. Fusion, 50, 4, Article 043001 pp., 2010
[15] Heumann, H., A galerkin method for the weak formulation of current diffusion and force balance in tokamak plasmas, J. Comput. Phys., 442, Article 110483 pp., 2021 · Zbl 07513803
[16] Hansen, C.; Boyle, D. P.; Schmitt, J. C.; Majeski, R., Equilibrium reconstruction with 3D eddy currents in the lithium tokamak experiment, Phys. Plasmas, 24, 4, Article 042513 pp., 2017
[17] Heumann, H.; Blum, J.; Boulbe, C.; Faugeras, B.; Selig, G.; Ané, J.-M.; Brémond, S.; Grandgirard, V.; Hertout, P.; Nardon, E., Quasi-static free-boundary equilibrium of toroidal plasma with cedres: computational methods and applications, J. Plasma Phys., 81, 3, Article 905810301 pp., 2015
[18] Blum, J.; Heumann, H.; Nardon, E.; Song, X., Automating the design of tokamak experiment scenarios, J. Comput. Phys., 394, C, 594-614, 2019 · Zbl 1452.49020
[19] Faugeras, B., An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the nice code, Fusion Eng. Des., 160, Article 112020 pp., 2020
[20] Howell, E.; Sovinec, C., Solving the Grad-Shafranov equation with spectral elements, Comput. Phys. Commun., 185, 5, 1415-1421, 2014 · Zbl 1344.76063
[21] Palha, A.; Koren, B.; Felici, F., A mimetic spectral element solver for the Grad-Shafranov equation, J. Comput. Phys., 316, 63-93, 2016 · Zbl 1349.76516
[22] Jardin, S., A triangular finite element with first-derivative continuity applied to fusion mhd applications, J. Comput. Phys., 200, 1, 133-152, 2004 · Zbl 1288.76043
[23] Elarif, A.; Faugeras, B.; Rapetti, F., Tokamak free-boundary plasma equilibrium computation using finite elements of class C0 and C1 within a mortar element approach, J. Comput. Phys., 439, Article 110388 pp., 2021 · Zbl 07512329
[24] Davis, T. A., Algorithm 832: umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 2, 196-199, 2004 · Zbl 1072.65037
[25] Schenk, O.; Gärtner, K.; Fichtner, W., Efficient sparse lu factorization with left-right looking strategy on shared memory multiprocessors, BIT Numer. Math., 40, 158-176, 2000 · Zbl 0957.65016
[26] Lackner, K., Computation of ideal MHD equilibria, Comput. Phys. Commun., 12, 1, 33-44, 1976
[27] Jardin, S., Computational Methods in Plasma Physics, 2010, CRC Press · Zbl 1198.76002
[28] Hanson, J. D., The virtual-casing principle and Helmholtz’s theorem, Plasma Phys. Control. Fusion, 57, 11, Article 115006 pp., 2015
[29] Piessens, R.; de Doncker-Kapenga, E.; Überhuber, C.; Kahaner, D., Quadpack: A Subroutine Package for Automatic Integration, Springer Series in Computational Mathematics, 2012, Springer Berlin Heidelberg
[30] Crow, J. A., Quadrature of integrands with a logarithmic singularity, Math. Comput., 60, 201, 297-301, 1993 · Zbl 0795.65010
[31] Itagaki, M.; ichi Kamisawada, J.; ichi Oikawa, S., Boundary-only integral equation approach based on polynomial expansion of plasma current profile to solve the Grad-Shafranov equation, Nucl. Fusion, 44, 3, 427, 2004
[32] Dudson, B., FreeGS, 2020
[33] Albanese, R.; Blum, J.; Barbieri, O., On the solution of the magnetic flux equation in an infinite domain, (EPS. 8th Europhysics Conference on Computing in Plasma Physics, 1986), 41-44
[34] Lawson, C.; Hanson, R. H., Solving Least Squares Problems, 1995, SIAM · Zbl 0860.65029
[35] Hansen, C. J., MHD modeling in complex 3D geometries: Towards predictive simulation of SIHI current drive, 2014, University of Washington, Thesis
[36] Sutherland, D. A.; Hansen, C. J., Driven resonant current amplification in self-organized plasma configurations with uniform λ and plasma pressure confinement, Phys. Plasmas, 28, 2, Article 022507 pp., 2021
[37] Glasser, A. H., The direct criterion of Newcomb for the ideal MHD stability of an axisymmetric toroidal plasma, Phys. Plasmas, 23, 7, Article 072505 pp., 2016
[38] Snyder, P. B.; Wilson, H. R.; Ferron, J. R.; Lao, L. L.; Leonard, A. W.; Osborne, T. H.; Turnbull, A. D.; Mossessian, D.; Murakami, M.; Xu, X. Q., Edge localized modes and the pedestal: a model based on coupled peeling-ballooning modes, Phys. Plasmas, 9, 5, 2037-2043, 2002
[39] Xing, Z.; Eldon, D.; Nelson, A.; Roelofs, M.; Eggert, W.; Izacard, O.; Glasser, A.; Logan, N.; Meneghini, O.; Smith, S.; Nazikian, R.; Kolemen, E., Cake: consistent automatic kinetic equilibrium reconstruction, Fusion Eng. Des., 163, Article 112163 pp., 2021
[40] Bellan, P. M., Spheromaks: a Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-Organization, 2000, World Scientific
[41] Rosenbluth, M.; Bussac, M., MHD stability of spheromak, Nucl. Fusion, 19, 4, 489, 1979
[42] Solov’ev, L. S., The theory of hydromagnetic stability of toroidal plasma configurations, Sov. Phys. JETP, 26, 400, 1968
[43] Zheng, S. B.; Wootton, A. J.; Solano, E. R., Analytical tokamak equilibrium for shaped plasmas, Phys. Plasmas, 3, 3, 1176-1178, 1996
[44] Xu, T.; Fitzpatrick, R., Vacuum solution for solov’ev’s equilibrium configuration in tokamaks, Nucl. Fusion, 59, 6, Article 064002 pp., 2019
[45] Cerfon, A. J.; Freidberg, J. P., “One size fits all” analytic solutions to the Grad-Shafranov equation, Phys. Plasmas, 17, 3, Article 032502 pp., 2010
[46] Rodriguez-Fernandez, P.; Howard, N. T.; Greenwald, M. J.; Creely, A. J.; Hughes, J. W.; Wright, J. C.; Holland, C.; Lin, Y.; Sciortino, F., Predictions of core plasma performance for the sparc tokamak, J. Plasma Phys., 86, 5, Article 865860503 pp., 2020
[47] 2020, C. F. S. (CFS), SPARCPublic
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.