×

Simulation, modeling, and analysis of soliton waves interaction and propagation in CNN transmission lines for innovative data communication and processing. (English) Zbl 1418.35320

Summary: We present an innovative approach to study the interaction between oblique solitons, using nonlinear transmission lines, based on Cellular Neural Network (CNN) paradigm. A single transmission line consists of a 1D array of cells that interact with neighboring cells, through both linear and nonlinear connections. Each cell is controlled by a nonlinear Ordinary Differential Equation, in particular the Korteweg de Vries equation, which defines the cell status and behavior. Two typologies of CNN transmission lines are modelled: crisscross and ring lines. In order to solve KdV equations two different methods are used: 4th-order Runge-Kutta and Forward Euler methods. This is done to evaluate their accuracy and stability with the purpose of implementing CNN transmission lines on embedded systems such as FPGA and microcontrollers. Simulation/analysis Graphic User Interface platforms are designed to conduct numerical simulations and to display elaboration results. From this analysis it is possible both to identify the presence and the propagation of soliton waves on the transmission lines and to highlight the interaction between solitons and rich nonlinear dynamics. With this approach it is possible to simulate and develop the transmission and processing of information within large brain networks and high density sensor systems.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations

Software:

CNN

References:

[1] Hirota, R.; Suzuki, K., Theoretical and experimental studies of lattice solitons in nonlinear lumped networks, Proceedings of the IEEE, 61, 10, 1483-1491 (1973) · doi:10.1109/proc.1973.9297
[2] Toda, M., Theory of Nonlinear Lattices. Theory of Nonlinear Lattices, Original Japanese Edition (1978), Berlin, Germany: Springer, Berlin, Germany
[3] Fukushima, K.; Wadati, M.; Kotera, T.; Sawada, K.; Narahara, Y., Experimental and theoretical study of the recurrence phenomena in nonlinear transmission line, Journal of the Physical Society of Japan, 48, 3, 1029-1035 (1980) · doi:10.1143/jpsj.48.1029
[4] Giambò, S.; Pantano, P.; Tucci, P., An electrical model for Korteweg-de Vries equation, American Journal of Physics, 52, 238-243 (1984)
[5] Korteweg, D. J.; de Vries, G., XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine Series 5, 39, 240, 422-443 (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[6] Anile, A. M.; Hunter, J.; Pantano, P.; Russo, G., Ray Methods for Nonlinear Waves in Fluids and Plasmas (1993), Longman Scientific and Technics · Zbl 0818.76001
[7] Zabusky, N. J.; Kruskal, M. D., Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Physical Review Letters, 15, 6, 240-243 (1965) · Zbl 1201.35174 · doi:10.1103/physrevlett.15.240
[8] Nijhoff, F.; Capel, H., The discrete Korteweg-de Vries equation, Acta Applicandae Mathematicae, 39, 1-3, 133-158 (1995) · Zbl 0841.58034 · doi:10.1007/bf00994631
[9] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-deVries equation, Physical Review Letters, 19, 19, 1095-1097 (1967) · Zbl 1103.35360 · doi:10.1103/physrevlett.19.1095
[10] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Korteweg-devries equation and generalizations. VI. methods for exact solution, Communications on Pure and Applied Mathematics, 27, 1, 97-133 (1974) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[11] Qiao, Z.; Li, J., Negative-order KdV equation with both solitons and kink wave solutions, Europhysics Letters, 94, 5 (2011) · doi:10.1209/0295-5075/94/50003
[12] Qiao, Z.; Fan, E., Negative-order Korteweg-de Vries equations, Physical Review E, 86, 1 (2012) · doi:10.1103/physreve.86.016601
[13] Feng, B.; Zhang, Y., Two kinds of new integrable couplings of the negative-order Korteweg-de Vries equation, Advances in Mathematical Physics, 2015 (2015) · Zbl 1337.37053 · doi:10.1155/2015/154915
[14] Kolosick, J.; Landt, D. L.; Hsuan, H. C. S.; Lonngren, K. E., Experimental study of solitary waves in a nonlinear transmission line, Applied Physics, 2, 3, 129-131 (1973) · doi:10.1007/BF00883973
[15] Freeman, R. H.; Karbowiak, A. E., An investigation of nonlinear transmission lines and shock waves, Journal of Physics D: Applied Physics, 10, 5, 633-643 (1977) · doi:10.1088/0022-3727/10/5/005
[16] Duan, W.-S., Nonlinear waves propagating in the electrical transmission line, Europhysics Letters, 66, 2, 192-197 (2004) · doi:10.1209/epl/i2003-10203-3
[17] Guardado, L.; Beníte, F.; Kaikina, E.; Ruiz, F.; Hernández, M., An asymptotic solution to non-linear transmission lines, Nonlinear Analysis: Real World Applications, 8, 3, 715-724 (2007) · Zbl 1136.35078 · doi:10.1016/j.nonrwa.2006.05.005
[18] Ndzana, F. I. I.; Mohamadou, A.; Kofané, T. C.; English, L. Q., Modulated waves and pattern formation in coupled discrete nonlinear LC transmission lines, Physical Review E, 78, 1-13 (2008) · doi:10.1103/physreve.78.016606
[19] Mostafa, S. I., Analytical study for the ability of nonlinear transmission lines to generate solitons, Chaos, Solitons & Fractals, 39, 5, 2125-2132 (2009) · doi:10.1016/j.chaos.2007.06.083
[20] Kengne, E.; Vaillancourt, R., Propagation of solitary waves on lossy nonlinear transmission lines, International Journal of Modern Physics B, 23, 1, 1-18 (2009) · Zbl 1165.78312 · doi:10.1142/s0217979209049619
[21] Ricketts, D. S.; Li, X.; Ham, D., Electrical soliton oscillator, IEEE Transactions on Microwave Theory and Techniques, 54, 1, 373-382 (2006) · doi:10.1109/tmtt.2005.861652
[22] Lee, T. H., Device physics: electrical solitons come of age, Nature, 440, 7080, 36-37 (2006) · doi:10.1038/440036a
[23] Roska, T.; Chua, L. O.; Wolf, D.; Kozek, T.; Tetzlaff, R.; Puffer, F., Simulating nonlinear waves and partial differential equations via CNN. I. Basic techniques, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42, 10, 807-815 (1995) · doi:10.1109/81.473590
[24] Fortuna, L.; Rizzo, A.; Xibilia, M. G., Modeling complex dynamics via extended PWL-based CNNs, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 13, 11, 3273-3286 (2003) · Zbl 1064.37514 · doi:10.1142/S0218127403008727
[25] Bilotta, E.; Pantano, P., Cellular nonlinear networks meet KdV equation: a newparadigm, International Journal of Bifurcation and Chaos, 23, 1 (2013) · Zbl 1270.68236 · doi:10.1142/s0218127413300036
[26] Borgese, G.; Pace, C.; Pantano, P.; Bilotta, E., FPGA-based distributed computing microarchitecture for complex physical dynamics investigation, IEEE Transactions on Neural Networks and Learning Systems, 24, 9, 1390-1399 (2013) · doi:10.1109/TNNLS.2013.2252924
[27] Chua, L. O.; Yang, L., Cellular neural networks: theory, IEEE Transactions on Circuits and Systems, 35, 10, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[28] Chua, L. O., A Paradigm for Complexity. A Paradigm for Complexity, World Scientific Series on Nonlinear Science (1996), Singapore: World Scientific, Singapore · Zbl 1004.37515
[29] Chua, L. O.; Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications (2004), Cambridge, UK: Cambridge University Press, Cambridge, UK
[30] Bilotta, E.; Pantano, P.; Vena, S., Artificial micro-worlds. Part I: a new approach for studying life-like phenomena, International Journal of Bifurcation and Chaos, 21, 2, 373-398 (2011) · Zbl 1210.68071 · doi:10.1142/s0218127411028659
[31] Bilotta, E.; Pantano, P., Artificial micro-worlds part II: cellular automata growth dynamics, International Journal of Bifurcation and Chaos, 21, 3, 619-645 (2011) · Zbl 1215.68139 · doi:10.1142/s0218127411028672
[32] Cerasa, A.; Bilotta, E.; Augimeri, A.; Cherubini, A.; Pantano, P.; Zito, G.; Lanza, P.; Valentino, P.; Gioia, M. C.; Quattrone, A., A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions, Journal of Neuroscience Methods, 203, 1, 193-199 (2012) · doi:10.1016/j.jneumeth.2011.08.047
[33] Borgese, G.; Pace, C.; Pantano, P.; Bilotta, E., Reconfigurable implementation of a CNN-UM platform for fast dynamical systems simulation, Applications in Electronics Pervading Industry, Environment and Society. Applications in Electronics Pervading Industry, Environment and Society, Lecture Notes in Electrical Engineering, 289 (2014), Berlin, Germany: Springer, Berlin, Germany
[34] Kako, F.; Yajima, N., Interaction of ion-acoustic solitons in two-dimensional space, Journal of the Physical Society of Japan, 49, 5, 2063-2071 (1980) · Zbl 1334.82062 · doi:10.1143/JPSJ.49.2063
[35] Dinkel, J. N.; Setzer, C.; Rawal, S.; Lonngren, K. E., Soliton propagation and interaction on a two-dimensional nonlinear transmission line, Chaos, Solitons and Fractals, 12, 1, 91-96 (2001) · Zbl 1038.81016 · doi:10.1016/s0960-0779(99)00173-3
[36] Alexeyev, A. A., A multidimensional superposition principle: classical solitons, Physics Letters. A, 335, 2-3, 197-206 (2005) · Zbl 1123.35341 · doi:10.1016/j.physleta.2004.12.011
[37] Soomere, T., Solitons interactions, Encyclopedia of Complexity and Systems Science, 8479-8505 (2009), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-0-387-30440-3_507
[38] Malomed, B. A.; Mihalache, D.; Wise, F.; Torner, L., Spatiotemporal optical solitons, Journal of Optics B: Quantum and Semiclassical Optics, 7, 5, R53-R72 (2005) · doi:10.1088/1464-4266/7/5/R02
[39] Fortuna, L.; Frasca, M.; Rizzo, A., Generating solitons in lattices of nonlinear circuits, Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’01)
[40] Vliegenthart, A. C., On finite-difference methods for the Korteweg-de Vries equation, Journal of Engineering Mathematics, 5, 2, 137-155 (1971) · Zbl 0221.76003 · doi:10.1007/bf01535405
[41] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM Journal of Research and Development, 11, 215-234 (1967) · Zbl 0145.40402
[42] Borgese, G., MATLAB SIMANSOL GUI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.