×

Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out. (English) Zbl 1473.35587

Summary: In this paper, we construct a model to describe the transmission of HIV in a homogeneous host population. By considering the specific mechanism of HIV, we derive a model structured in three successive stages: (i) primary infection, (ii) long phase of latency without symptoms, and (iii) AIDS. Each HIV stage is stratified by the duration for which individuals have been in the stage, leading to a continuous age-structure model. In the first part of the paper, we provide a global analysis of the model depending upon the basic reproduction number \(\operatorname{Re}_0\). When \(\operatorname{Re}_0\leq 1\), then the disease-free equilibrium is globally asymptotically stable and the infection is cleared in the host population. On the contrary, if \(\operatorname{Re}_0>1\), we prove the epidemic’s persistence with the asymptotic stability of the endemic equilibrium. By performing the sensitivity analysis, we then determine the impact of control-related parameters on the outbreak severity. For the second part, the initial model is extended with intervention methods. By taking into account antiretroviral therapy (ART) interventions and the probability of treatment drop out, we discuss optimal intervention methods which minimize the number of AIDS cases.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
49J20 Existence theories for optimal control problems involving partial differential equations
35B35 Stability in context of PDEs
92D30 Epidemiology
92D25 Population dynamics (general)

References:

[1] Aide Suisse Contre le SIDA. (2018). Evolution d’une infection par le VIH. www.aids.ch/fr/vivre-avec-vih/aspects-medicaux/evolution.php.
[2] AIDS info. (2018). Offering Information on HIV/AIDS Treatment, Prevention and Research. aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/51/hiv-treatment-the-basics..
[3] S. Anita, Vol. 11 of Analysis and control of age-dependent population dynamics. Springer Science & Business Media (2000). · Zbl 0960.92026
[4] V. Barbu and M. Iannelli, Optimal control of population dynamics. J. Optim. Theory Appl. 102 (1999) 1-14. · Zbl 0984.92022
[5] T. Bernard, K. Diop and P. Vinard, The cost of universal free access for treating HIV/AIDS in low-income countries: the case of Senegal (2008). http://hal.ird.fr/ird-00403656.
[6] Centers for Disease Control and Prevention (CDC). (2018). HIV Prevention. https://www.cdc.gov/hiv/basivs/prevention.html.
[7] J. Chu, A. Ducrot, P. Magal and S. Ruan, Hopf bifurcation in a size-structured population dynamic model with random growth. J. Differ. Equ. 247 (2009) 956-1000. · Zbl 1172.35322
[8] G. Da Prato and M. Iannelli, Boundary control problems for age-dependent equations. In Vol. 155 of Evolution equations, control theory and biomathematics. Marcel Dekker (1993) 91-100. · Zbl 0802.93034
[9] C.A. da Silva Filho and J.L. Boldrini, An analysis of an optimal control problem for mosquito populations. Nonlinear Anal.: Real World Appl. 42 (2018) 353-377. · Zbl 1392.49030
[10] R. Djidjou-Demasse, J.J. Tewa, S. Bowong and Y. Emvudu, Optimal control for an age-structured model for the transmission of hepatitis B. J. Math. Biol. 73 (2016) 305-333. · Zbl 1349.35379
[11] O. Diekmann, J.A.P. Heesterbeek and J.A. Metz, On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365-382. · Zbl 0726.92018
[12] A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J. Math. Anal. Appl. 341 (2008) 501-518. · Zbl 1142.34036
[13] J.W. Eaton and T.B. Hallett, Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence. Proc. Natl. Acad. Sci. 111 (2014) 16202-16207.
[14] I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47 (1974) 324-353. · Zbl 0286.49015
[15] L.C. Evans and R.F. Gariepy, Measure Theory and Fini Properties of Functions. CRC Press, Boca Raton (1992). · Zbl 0804.28001
[16] G. Feichtinger, G. Tragler and V.M. Veliov, Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288 (2003) 47-68. · Zbl 1042.49035
[17] K.R. Fister and S. Lenhart, Optimal control of a competitive system with age-structure. J. Math. Anal. Appl. 291 (2004) 526-537. · Zbl 1043.92031
[18] A.B. Gumel, C.C. McCluskey and P. van den Driessche, Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull. Math. Biol. 68 (2006) 2105-2128. · Zbl 1296.92124
[19] H. Guo and M.Y. Li, Global dynamics of a staged-progression model for HIV/AIDS with amelioration. Nonlinear Anal.: Real World Appl. 12 (2011) 2529-2540. · Zbl 1225.34052
[20] J.K. Hale, J.P. LaSalle and M. Slemrod, Theory of a general class of dissipative processes. J. Math. Anal. Appl. 39 (1972) 177-191. · Zbl 0238.34098
[21] T.D. Hollingsworth, R.M. Anderson and C. Fraser, HIV-1 transmission, by stage of infection. J. Infect. Dis. 198 (2008) 687-693.
[22] J.F. Hutchinson, The biology and evolution of HIV. Annu. Rev. Anthropol. 30 (2001) 85-108.
[23] J.M. Hyman, J. Li and E.A. Stanley, The differential infectivity and staged progression models for the transmission of HIV12. Math. Biosci. 155 (1999) 77-109. · Zbl 0942.92030
[24] J.M. Hyman, J. Li and E.A. Stanley, The differential infectivity and staged progression models for the transmission of HIV. Math. Biosci. 155 (1999) 77-109. · Zbl 0942.92030
[25] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Giadini Editori e Stampatori, Pisa (1994).
[26] H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65 (2012) 309-348. · Zbl 1303.92117
[27] M.E. Kretzschmar, M.F.S. van der Loeff, P.J. Birrell, D. De Angelis and R.A. Coutinho, Prospects of elimination of HIV with test-and-treat strategy. Proc. Natl. Acad. Sci. 110 (2013) 15538-15543. · Zbl 1292.92010
[28] O.A. Ladyzhenskaya, On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations. Uspekhi Mat. Nauk 42 (1987) 25-60. · Zbl 0687.35072
[29] S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press (2007). · Zbl 1291.92010
[30] X. Lin, H.W. Hethcote and P. Van den Driessche, An epidemiological model for HIV/AIDS with proportional recruitment. Math. Biosci. 118 (1993) 181-195. · Zbl 0793.92011
[31] P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14 (2009) 1041-1084. · Zbl 1225.47042
[32] P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. Am. Math. Soc. (2009). · Zbl 1191.35045
[33] P. Magal, C.C. McCluskey and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89 (2010) 1109-1140. · Zbl 1208.34126
[34] P. Magal, Compact attractors for time-periodic age-structured population models. Electr. J. Differ. Equ. (2001). · Zbl 0992.35019
[35] C.C. McCluskey, A model of HIV/AIDS with staged progression and amelioration. Math. Biosci. 181 (2003) 1-16. · Zbl 1008.92032
[36] E. Numfor, S. Bhattacharya, M. Martcheva and S. Lenhart, Optimal control in multi-group coupled within-host and between-host models. Electr. J. Differ. Equ. 2016 (2016) 87-117. · Zbl 1342.49064
[37] R.N. Nsubuga, R.G. White, B.N. Mayanja and L.A. Shafer, Estimation of the HIV basic reproduction number in rural South West Uganda: 1991-2008. PloS one 9 (2014) e83778.
[38] A. Pazy, Semigroups of Linear Operator and Applications to Partial Differential Equations. Appl. Math. Sci. 44 (1983). · Zbl 0516.47023
[39] A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 (1999) 3-44. · Zbl 1078.92502
[40] S.D. Pinkerton, Probability of HIV transmission during acute infection in Rakai. Natl. Inst. Health Uganda. AIDS Behavior 12 (2008) 677-684.
[41] G. Rozhnova, M.F.S. van der Loeff, J.C. Heijne and M.E. Kretzschmar, Impact of heterogeneity in sexual behavior on effectiveness in reducing HIV transmission with test-and-treat strategy. PLoS Comput. Biol. 12 (2016) e1005012.
[42] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer. John Wiley & Sons (2008). · Zbl 1161.00304
[43] G.R. Sell and Y. You, Dynamics of Evolutionary Equations. Springer, New York (2002). · Zbl 1254.37002
[44] M. Shen, Y. Xiao and L. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics. Math. Biosci. 263 (2015) 37-50. · Zbl 1371.92130
[45] H.L. Smith and H.R. Thieme, Vol. 118 of Dynamical systems and population persistence. American Mathematical Soc. (2011). · Zbl 1214.37002
[46] H.R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152 (1990) 416-447. · Zbl 0738.47037
[47] H.R. Thieme, Quasi-compact semigroups via bounded perturbation. Advances in Mathematical Population Dynamics-Molecules, Cells and Man, edited by O. Arino, D. Axelrod, and M. Kimmel. Worlds Scientific (1997) 691-713. · Zbl 0945.47033
[48] H.R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators. J. Differ. Equ. 250 (2011) 3772-3801. · Zbl 1215.37052
[49] United Nations Programme on HIV/AIDS (UNAIDS) (2016). Global AIDS Update 2016. www.unaids.org.
[50] G.F. Webb, Theory of nonlinear age-dependent population dynamics. CRC Press (1985). · Zbl 0555.92014
[51] R. Weston and B. Marett, HIV infection pathology and disease progression. Vol. 1 of Clinical Pharmacist (2009).
[52] World Health Organization (WHO) (2017). www.who.int/features/qa/71/fr/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.