×

Optimal intervention strategies of a SI-HIV models with differential infectivity and time delays. (English) Zbl 1437.92110

Summary: HIV infection is divided into stages of infection which are determined by the CD4 cells count progression. Through each stage, the time delay for the progression is important because the duration of HIV infection varies according to the infectious. Retarded optimal control theory is applied to a system of delays ordinary differential equations modeling the evolution of HIV with differential infectivity. Seeking to reduce the population of the infective individuals with low CD4 cells, we use the ARV drug to control the fraction of infective individuals that is identified and will be put under treatment. We use optimal control theory to study our proposed system. Numerical simulations are provided to illustrate the effect of the antiretroviral treatment (ART) taking into account the delays.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
49K15 Optimality conditions for problems involving ordinary differential equations
34K35 Control problems for functional-differential equations
Full Text: DOI

References:

[1] AIDS INFO - U.S. Department of Health and Human Services, Offering Information On HIV/AIDS Treatment, Prevention, and Research. Understanding HIV/AIDS, Side Effects of HIV Medicines, 2017. Available from: https://aidsinfo.nih.gov.
[2] D. S. Callaway; A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64, 29-64 (2002) · Zbl 1334.92227 · doi:10.1006/bulm.2001.0266
[3] Canada’s Source for HIV and Hepatitis C Information (CATIE), HIV Treatment and an Undetectable Viral Load to Prevent HIV Transmission, 2018. Available from: www.catie.ca./reports/reports.webpage.
[4] N. Chitnis; J. M. Hyman; J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 1272-1296 (2008) · Zbl 1142.92025 · doi:10.1007/s11538-008-9299-0
[5] R. V. Culshaw; S. Ruan, A delay-differential equation model of HIV infection of \(CD4^+\) T-cells, Math. Biosci., 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[6] D. C. Douek; M. Roederer; R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annual Rev. Medicine, 60, 471-484 (2009) · doi:10.1146/annurev.med.60.041807.123549
[7] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Modell., 2, 288-303 (2017) · doi:10.1016/j.idm.2017.06.002
[8] J. W. Eaton and T. B. Hallett, Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence, Proceedings of the National Academy of Sciences, 111, 2014, 16202—16207.
[9] H. R. Erfanian; M. H. Noori Skandari, Optimal control of an HIV model, Internat. J. Appl. Math. Comput. Sci., 2, 650-658 (2011) · doi:10.22436/jmcs.02.04.09
[10] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Applications of Mathematics, 1, Springer-Verlag, Berlin-New York, 1975. · Zbl 0323.49001
[11] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. · Zbl 0787.34002
[12] D. D. Ho; A. U. Neumann; A. S. Perelson; W. Chen; J. M. Leonard; M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995) · doi:10.1038/373123a0
[13] J. F. Hutchinson, The biology and evolution of HIV, Annual Rev. Anthropology, 30, 85-108 (2001) · doi:10.1146/annurev.anthro.30.1.85
[14] H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23, 199-213 (2002) · Zbl 1072.92509 · doi:10.1002/oca.710
[15] S. E. Langford; J. Ananworanich; D. A. Cooper, Predictors of disease progression in HIV infection: A review, AIDS Res. Therapy, 4, 4-11 (2007) · doi:10.1186/1742-6405-4-11
[16] C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181, 1-16 (2003) · Zbl 1008.92032 · doi:10.1016/S0025-5564(02)00149-9
[17] P. T. Mouofo; J. J. Tewa; B. Mewoli; S. Bowong, Optimal control of a delayed system subject to mixed control-state constraints with application to a within-host model of hepatitis virus B, Annual Rev. Control, 37, 246-259 (2013) · doi:10.1016/j.arcontrol.2013.09.004
[18] J. M. Murray; G. Kaufmann; A. D. Kelleher; D. A. Cooper, A model of primary HIV-1 infection, Math. Biosci., 154, 57-85 (1998) · Zbl 0938.92020 · doi:10.1016/S0025-5564(98)10046-9
[19] P. W. Nelson; J. D. Murray; A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163, 201-215 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[20] P. W. Nelson; A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[21] A. S. Perelson; A. U. Neumann; M. Markowitz; J. M. Leonard; D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996) · doi:10.1126/science.271.5255.1582
[22] D. Powell, J. Fair, R. J. Leclaire and L. M. Moore, Sensitivity analysis of an infectious disease model, International System Dynamics Conference, Boston, MA, 2005.
[23] F. Rodrigues; C. J. Silva; D. F. M. Torres, Optimal control of a delayed HIV model, Discrete Contin. Dyn. Syst. Ser. B, 23, 443-458 (2018) · Zbl 1374.34177 · doi:10.3934/dcdsb.2018030
[24] H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Sensitivity analysis in a dengue epidemiological model, Conference Papers in Mathematics, 2013 (2013), 7pp.
[25] M. Shirazian; M. H. Farahi, Optimal control strategy for a fully determined HIV model, Intelligent Control Automation, 1, 15-19 (2010) · doi:10.4236/ica.2010.11002
[26] R. A. Weiss, How does HIV cause AIDS?, Science, 260, 1273-1279 (1993) · doi:10.1126/science.8493571
[27] C. G. Wermuth, The Practice of Medicinal Chemistry, Elsevier Science, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.