×

Mild solution for the time fractional magneto-hydrodynamics system. (English) Zbl 1535.35145

Summary: In this paper, by using the Mittag-Leffler operators \(\{\mathcal{L}_\alpha(-t^\alpha\mathbb{I}): t \geq 0\}\) and \(\{\mathcal{L}_{\alpha,\alpha}(-t^\alpha\mathbb{I}): t \geq 0\}\) we will prove the mild soltion of the time fractional magneto-hydrodynamics system with a fractional derivative of Caputo. Furthermore, by Itô integral, we will establish the mild solution of stochastic time fractional magneto-hydrodynamics system in \(\mathcal{EN}_p^\lambda \cap \mathrm{N}_{p, \lambda}^{2\alpha}\).

MSC:

35Q35 PDEs in connection with fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
60H05 Stochastic integrals
35R11 Fractional partial differential equations
35R60 PDEs with randomness, stochastic partial differential equations
Full Text: DOI

References:

[1] Azanzal, A.; Allalou, C.; Melliani, S., Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces, J. Elliptic Parabol. Equ., 8, 1, 23-48 (2022) · Zbl 1491.35330 · doi:10.1007/s41808-021-00140-x
[2] Azanzal, A.; Allalou, C.; Abbassi, A., Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, J. Nonlinear Funct. Anal., 2021, 24 (2021) · Zbl 1524.35295
[3] Azanzal, A.; Allalou, C.; Melliani, S., Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier-Besov spaces, Boletin de la Sociedad Matemática Mexicana, 28, 3, 74 (2022) · Zbl 1498.35005 · doi:10.1007/s40590-022-00468-x
[4] Azanzal, A.; Allalou, C.; Melliani, S., Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier-Besov-Morrey spaces, Boletim da Sociedade Paranaense de Matemática, 41, 1-19 (2023) · Zbl 07805672 · doi:10.5269/bspm.62517
[5] Bahouri, H.; Chemin, JY; Danchin, R., Fourier analysis and nonlinear partial differential equations (2011), Berlin: Springer Science and Business Media, Berlin · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[6] Caputo, M., Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soci Am., 56, 3, 897-904 (1974) · Zbl 0285.73031 · doi:10.1121/1.1903344
[7] Chae, D.; Lee, J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys., 233, 297-311 (2003) · Zbl 1019.86002 · doi:10.1007/s00220-002-0750-z
[8] Chemin, JY; Desjardins, B.; Gallagher, I.; Grenier, E., Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations (2006), Oxford: Clarendon Press, Oxford · Zbl 1205.86001 · doi:10.1093/oso/9780198571339.001.0001
[9] De Carvalho-Neto, PM; Planas, G., Mild solutions to the time fractional Navier-Stokes equations in RN, J. Differ. Equ., 259, 7, 2948-2980 (2015) · Zbl 1436.35316 · doi:10.1016/j.jde.2015.04.008
[10] Eidelman, SD; Kochubei, AN, Cauchy problem for fractional diffusion equations, J. Differ. Equ., 199, 2, 211-255 (2004) · Zbl 1068.35037 · doi:10.1016/j.jde.2003.12.002
[11] El Baraka, A., Toumlilin, M.: Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces (2017) · Zbl 1375.35314
[12] El Baraka, A.; Toumlilin, M., Well-posedness and stability for the generalized incompressible magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces, J. Acta Math. Sci., 39, 1551-1567 (2019) · Zbl 1499.35497 · doi:10.1007/s10473-019-0607-6
[13] El Baraka, A.; Toumlilin, M., The uniform global well-posedness and the stability of the 3D generalized magnetohydrodynamic equations with the Coriolis force, J. Commun. Optim. Theory, 2019, 12 (2019)
[14] Ferreira, LCF; Lima, LSM, Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces, Monatshefte für Math., 175, 491-509 (2014) · Zbl 1302.35316 · doi:10.1007/s00605-014-0659-6
[15] Khan, I.; Saqib, M.; Ali, F., Application of time-fractional derivatives with non-singular kernel to the generalized convective flow of Casson fluid in a microchannel with constant walls temperature, Eur. Phys. J. Special Topics, 226, 3791-380, 2 (2017)
[16] Liu, Q.; Zhao, J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier?Herz spaces, J. Math. Anal. Appl., 420, 2, 1301-1315 (2014) · Zbl 1300.35098 · doi:10.1016/j.jmaa.2014.06.031
[17] Mainardi, F., On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci, 1994, 246-251 (1994)
[18] Sen, M., Introduction to fractional-order operators and their engineering applications (2014), Netherland: University of Notre Dame, Netherland
[19] Shinbrot, M., Fractional derivatives of solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 40, 2, 139-154 (1971) · Zbl 0221.35063 · doi:10.1007/BF00250318
[20] Sun, J.; Fu, Z.; Yin, Y.; Yang, M., Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces, J. Discrete Contin. Dyn. Syst.-B, 26, 6, 3409-3425 (2020) · Zbl 1471.35221
[21] Sun, X., Liu, J and Zhang, J.: Global Well-Posedness for the fractional Navier-Stokes-Coriolis equations in function spaces characterized by semigroups. (2021)
[22] Wang, Y.; Wang, K., Global well-posedness of the three dimensional magnetohydrodynamics equations, J. Nonlinear Anal. Real World Appl., 17, 245-251 (2014) · Zbl 1297.35191 · doi:10.1016/j.nonrwa.2013.12.002
[23] Wang, W., Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier-Besov spaces, J. Zeitschrift fur Angewandte Math. Phys., 70, 6, 163 (2019) · Zbl 1429.42028 · doi:10.1007/s00033-019-1210-3
[24] Xiao, Y., Packing measure of the sample paths of fractional Brownian motion, Trans. Am. Math. Soc., 348, 8, 3193-3213 (1996) · Zbl 0858.60039 · doi:10.1090/S0002-9947-96-01712-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.