×

Physical portrayal of computational complexity. (English) Zbl 1235.68073

Summary: Computational complexity is examined using the principle of increasing entropy. To consider computation as a physical process from an initial instance to the final acceptance is motivated because information requires physical representations and because many natural processes complete in nondeterministic polynomial time (NP). The irreversible process with three or more degrees of freedom is found intractable when, in terms of physics, flows of energy are inseparable from their driving forces. In computational terms, when solving a problem in the class NP, decisions among alternatives will affect subsequently available sets of decisions. Thus the state space of a nondeterministic finite automaton is evolving due to the computation itself, hence it cannot be efficiently contracted using a deterministic finite automaton. Conversely when solving problems in the class P, the set of states does not depend on computational history, hence it can be efficiently contracted to the accepting state by a deterministic sequence of dissipative transformations. Thus it is concluded that the state set of class P is inherently smaller than the state set of class NP. Since the computational time needed to contract a given set is proportional to dissipation, the computational complexity class P is a proper (strict) subset of NP.

MSC:

68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)

Software:

Concorde
Full Text: DOI

References:

[1] S. A. Cook, “The P vs. NP problem. CLAY Mathematics Foundation Millenium Problems,” http://www.claymath.org/millennium/.
[2] M. Sipser, Introduction to the Theory of Computation, Pws Publishing, New York, NY, USA, 2001. · Zbl 1169.68300
[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem: A Computational Study, Princeton University Press, Princeton, NJ, USA, 2006. · Zbl 1130.90036
[4] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, New York, NY, USA, 1999. · Zbl 0411.68039
[5] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research and Development, vol. 5, pp. 183-191, 1961. · Zbl 1160.68305 · doi:10.1147/rd.53.0183
[6] R. Landauer, “Minimal energy requirements in communication,” Science, vol. 272, no. 5270, pp. 1914-1918, 1996. · Zbl 1226.94002 · doi:10.1126/science.272.5270.1914
[7] C. H. Bennett, “Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon,” Studies in History and Philosophy of Science Part B, vol. 34, no. 3, pp. 501-510, 2003. · Zbl 1222.81039 · doi:10.1016/S1355-2198(03)00039-X
[8] J. Ladyman, “Physics and computation: the status of Landauer’s principle,” in Proceedings of the 3rd Conference on Computability in Europe (CiE ’070, S. B. Cooper, B. Lwe, and A. Sorbi, Eds., vol. 4497 of Lecture Notes in Computer Science, pp. 446-454, Springer, Siena, Italy, June 2007. · Zbl 1151.81313 · doi:10.1007/978-3-540-73001-9_46
[9] S. Carnot, Réflexions Sur la Puissance Motrice du feu et sur les Machines Propres à Développer Cette Puissance, Bachelier, Paris, France, 1824. · JFM 34.0058.06
[10] L. Boltzmann, “Populäre Schriften (Leipzig: J. A. Barth, 1905); partially translated,” in Theoretical Physics and Philosophical Problems, B. McGuinness, Ed., Reidel, Dordrecht, The Netherlands, 1974.
[11] A. S. Eddington, The Nature of Physical World, Macmillan, New York, NY, USA, 1928. · JFM 55.1215.07
[12] V. Sharma and A. Annila, “Natural process-Natural selection,” Biophysical Chemistry, vol. 127, no. 1-2, pp. 123-128, 2007. · doi:10.1016/j.bpc.2007.01.005
[13] V. R. I. Kaila and A. Annila, “Natural selection for least action,” Proceedings of the Royal Society A, vol. 464, no. 2099, pp. 3055-3070, 2008. · Zbl 1152.80303 · doi:10.1098/rspa.2008.0178
[14] P. Tuisku, T. K. Pernu, and A. Annila, “In the light of time,” Proceedings of the Royal Society A, vol. 465, no. 2104, pp. 1173-1198, 2009. · Zbl 1186.82047 · doi:10.1098/rspa.2008.0494
[15] Z. K. Silagadze, “Citation entropy and research impact estimation,” Acta Physica Polonica B, vol. 41, no. 11, pp. 2325-2333, 2010.
[16] S. Jaakkola, V. Sharma, and A. Annila, “Cause of chirality consensus,” Current Chemical Biology, vol. 2, no. 2, pp. 153-158, 2008. · doi:10.2174/187231308784220536
[17] S. Jaakkola, S. El-Showk, and A. Annila, “The driving force behind genomic diversity,” Biophysical Chemistry, vol. 134, no. 3, pp. 232-238, 2008. · doi:10.1016/j.bpc.2008.02.006
[18] T. Grönholm and A. Annila, “Natural distribution,” Mathematical Biosciences, vol. 210, no. 2, pp. 659-667, 2007. · Zbl 1131.62010 · doi:10.1016/j.mbs.2007.07.004
[19] P. Würtz and A. Annila, “Roots of diversity relations,” Biophysical Journal, vol. 2008, Article ID 654672, 8 pages, 2008. · doi:10.1155/2008/654672
[20] M. Karnani and A. Annila, “Gaia again,” BioSystems, vol. 95, no. 1, pp. 82-87, 2009. · doi:10.1016/j.biosystems.2008.07.003
[21] A. Annila and E. Kuismanen, “Natural hierarchy emerges from energy dispersal,” BioSystems, vol. 95, no. 3, pp. 227-233, 2009. · doi:10.1016/j.biosystems.2008.10.008
[22] A. Annila and E. Annila, “Why did life emerge?” International Journal of Astrobiology, vol. 7, no. 3-4, pp. 293-300, 2008. · doi:10.1017/S1473550408004308
[23] P. Würtz and A. Annila, “Ecological succession as an energy dispersal process,” BioSystems, vol. 100, no. 1, pp. 70-78, 2010. · doi:10.1016/j.biosystems.2010.01.004
[24] A. Annila and S. Salthe, “Economies evolve by energy dispersal,” Entropy, vol. 11, no. 4, pp. 606-633, 2009. · doi:10.3390/e11040606
[25] T. Mäkelä and A. Annila, “Natural patterns of energy dispersal,” Physics of Life Reviews, vol. 7, no. 4, pp. 477-498, 2010. · doi:10.1016/j.plrev.2010.10.001
[26] J. Anttila and A. Annila, “Natural games,” Physics Letters, Section A, vol. 375, no. 43, pp. 3755-3761, 2011. · Zbl 1254.82029 · doi:10.1016/j.physleta.2011.08.056
[27] D. Kondepudi and I. Prigogine, Modern Thermodynamics, John Wiley & Sons, New York, NY, USA, 1998. · Zbl 0902.00007
[28] V. Sharma, V. R. I. Kaila, and A. Annila, “Protein folding as an evolutionary process,” Physica A, vol. 388, no. 6, pp. 851-862, 2009. · doi:10.1016/j.physa.2008.12.004
[29] A. S. Fraenkel, “Complexity of protein folding,” Bulletin of Mathematical Biology, vol. 55, no. 6, pp. 1199-1210, 1993. · Zbl 0791.92010 · doi:10.1007/BF02460704
[30] S. A. Cook, “The complexity of theorem proving procedures,” in Proceedings of the 3rd annual ACM symposium on Theory of Computing (STOC ’71), pp. 151-158, 1971. · Zbl 0253.68020 · doi:10.1145/800157.805047
[31] E. Noether, “Invariante Variationprobleme. Nach. v.d. Ges. d. Wiss zu goettingen,” Mathphys. Klasse, pp. 235-257, 1918. · JFM 46.0770.01
[32] M. A. Tavel, “Invariant variation problem,” Transport Theory and Statistical Physics, vol. 1, pp. 183-207, 1971, English translation: E. Noether. · Zbl 0292.49008 · doi:10.1080/00411457108231446
[33] S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Westview, Cambridge, Mass, USA, 2000. · Zbl 0983.34022
[34] M. Karnani, K. Pääkönen, and A. Annila, “The physical character of information,” Proceedings of the Royal Society A, vol. 465, no. 2107, pp. 2155-2175, 2009. · Zbl 1186.94419 · doi:10.1098/rspa.2009.0063
[35] P. W. Atkins and J. de Paula, Physical Chemistry, Oxford University Press, New York, NY, USA, 2006.
[36] C. Darwin, On the Origin of Species, John Murray, London, UK, 1859.
[37] A. Annila and S. Salthe, “Physical foundations of evolutionary theory,” Journal of Non-Equilibrium Thermodynamics, vol. 35, no. 3, pp. 301-321, 2010. · Zbl 1213.80003 · doi:10.1515/JNETDY.2010.019
[38] M. Sipser, “History and status of the P versus NP question,” in Proceedings of the 24th Annual ACM Symposium on the Theory of Computing, pp. 603-618, May 1992.
[39] L. Brillouin, Science and Information Theory, Academic Press, New York, NY, USA, 1963. · Zbl 0071.13104
[40] A. J. Leggett and A. Garg, “Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?” Physical Review Letters, vol. 54, no. 9, pp. 857-860, 1985. · doi:10.1103/PhysRevLett.54.857
[41] A. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society, vol. 2, no. 42, pp. 230-265, 1936. · Zbl 0016.09701 · doi:10.1112/plms/s2-42.1.230
[42] R. E. Ladner, “On the structure of polynomial time reducibility,” Journal of the Association for Computing Machinery, vol. 22, no. 1, pp. 155-171, 1975. · Zbl 0322.68028 · doi:10.1145/321864.321877
[43] S. N. Salthe, Evolving Hierarchical Systems: Their Structure and Representation, Columbia University Press, New York, NY, USA, 1985.
[44] R. P. Feynman and A. R. Hibbs, Quantum Physics and Path Integrals, McGraw-Hill, New York, NY, USA, 1965. · Zbl 0176.54902
[45] R. D. Mattuck, A guide to Feynman Diagrams in the Many-Body Problem, Dover, New York, NY, USA, 1992.
[46] M. Alonso and E. J. Finn, Fundamental University Physics, vol. 3, Addison-Wesley, Reading, Mass, USA, 1983.
[47] J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Ox Bow Press, Woodbridge, Conn, USA, 1993-1994.
[48] S. Kullback, Information Theory and Statistics, John Wiley & Sons, New York, NY, USA, 1959. · Zbl 0088.10406
[49] L. G. Gouy, “Sur l’energie utilizable,” Journal de Physique, vol. 8, pp. 501-518, 1889. · JFM 21.1183.01
[50] A. Stodola, Steam and Gas Turbines, McGraw-Hill, New York, NY, USA, 1910.
[51] B. H. Lavenda, Nonequilibrium Statistical Thermodynamics, John Wiley & Sons, New York, NY, USA, 1985. · Zbl 0658.60130
[52] D. R. Owen, A First Course in the Mathematical Foundations of Rhermodynamics, Springer, New York, NY, USA, 1984. · Zbl 0537.73001
[53] U. Lucia, “Probability, ergodicity, irreversibility and dynamical systems,” Proceedings of the Royal Society A, vol. 464, no. 2093, pp. 1089-1104, 2008. · Zbl 1143.82019 · doi:10.1098/rspa.2007.0304
[54] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, no. 4, pp. 620-630, 1957. · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[55] H. Ziegler, An Introduction to Thermomechanics, North-Holland, Amsterdam, The Netherlands, 1983. · Zbl 0531.73080
[56] R. E. Ulanowicz and B. M. Hannon, “Life and the production of entropy,” Proceedings of the Royal Society B, vol. 232, pp. 181-192, 1987.
[57] D. R. Brooks and E. O. Wiley, Evolution as Entropy: Toward a Unified Theory of Biology, University of Chicago Press, Chicago, Ill, USA, 1988.
[58] R. Swenson, “Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution,” Systems Research, vol. 6, pp. 187-198, 1989.
[59] S. N. Salthe, Development and Evolution: Complexity and Change in Biology, MIT Press, Cambridge, Mass, USA, 1993.
[60] E. D. Schneider and J. J. Kay, “Life as a manifestation of the second law of thermodynamics,” Mathematical and Computer Modelling, vol. 19, no. 6-8, pp. 25-48, 1994.
[61] A. Bejan, Advanced Engineering Thermodynamics, John Wiley & Sons, New York, NY, USA, 1977.
[62] E. J. Chaisson, Cosmic Evolution: The Rise of Complexity in Nature, Harvard University Press, Cambridge, Mass, USA, 2001.
[63] R. D. Lorenz, “Planets, life and the production of entropy,” International Journal of Astrobiology, vol. 1, pp. 3-13, 2002.
[64] R. Dewar, “Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states,” Journal of Physics A, vol. 36, no. 3, pp. 631-641, 2003. · Zbl 1066.82026 · doi:10.1088/0305-4470/36/3/303
[65] C. H. Lineweaver, “Cosmological and biological reproducibility: limits of the maximum entropy production principle,” in Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, A. Kleidon and R. D. Lorenz, Eds., Springer, Heidelberg, Germany, 2005.
[66] L. M. Martyushev and V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology,” Physics Reports, vol. 426, no. 1, pp. 1-45, 2006. · doi:10.1016/j.physrep.2005.12.001
[67] M. Berry, Principles of Cosmology and Gravitation, Cambridge University Press, Cambridge, UK, 2001. · Zbl 0692.53027
[68] S. Weinberg, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, John Wiley & Sons, New York, NY, USA, 1972.
[69] E. F. Taylor and J. A. Wheeler, Spacetime Physics, Freeman, New York, NY, USA, 1992.
[70] J. M. Lee, Introduction to Smooth Manifolds, Springer, New York, NY, USA, 2003.
[71] D. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, Upper Saddle River, NJ, USA, 1995. · Zbl 0818.00001
[72] I. Newton, The Principia, Daniel Adee, New York, NY, USA, 1687, translated by A. Motte, 1846.
[73] A. Annila, “Least-time paths of light,” Monthly Notices of the Royal Astronomical Society, vol. 416, pp. 2944-2948, 2011.
[74] M. Koskela and A. Annila, “Least-time perihelion precession,” Monthly Notices of the Royal Astronomical Society, vol. 417, pp. 1742-1746, 2011.
[75] S. Carroll, Spacetime and Geometry: An Introduction to general relativity, Addison-Wesley, Essex, UK, 2004. · Zbl 1131.83001
[76] J. H. Poincaré, “Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt,” Acta Mathematica, vol. 13, pp. 1-270, 1890. · JFM 22.0907.01
[77] K. F. Sundman, “Memoire sur le probleme de trois corps,” Acta Mathematica, vol. 36, pp. 105-179, 1912. · JFM 43.0826.01
[78] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, Ill, USA, 1962. · Zbl 0126.35701
[79] C. E. Shannon, “The mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379-423-623-656, 1948. · Zbl 1154.94303
[80] S. J. Gould, The Structure of Evolutionary Ttheory, Harvard University Press, Cambridge, Mass, USA, 2002.
[81] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press & McGraw-Hill, Cambridge, Mass, USA, 2001. · Zbl 1047.68161
[82] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959. · Zbl 0092.16002 · doi:10.1007/BF01386390
[83] P. Billingsley, Probability and Measure, John Wiley & Sons, New York, NY, USA, 1979. · Zbl 0411.60001
[84] L. Levin, “Universal search problems,” Problems of Information Transmission, vol. 3, pp. 265-266, 1973 (Russian). · Zbl 0313.02026
[85] B. A. Trakhtenbrot, “A survey of Russian approaches to perebor (brute-force searches) algorithms,” Annals of the History of Computing, vol. 6, pp. 384-400, 1984, English translation: L. Levin. · Zbl 0998.01527
[86] S. Aaronson, “NP-complete problems and physical reality,” Electronic colloquium on computational complexity, Report no. 26, 2005.
[87] A. A. Razborov and S. Rudich, “Natural proofs,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 24-35, 1997. · Zbl 0884.68055
[88] M. Franzén, The P versus NP brief, 2007, http://arxiv.org/ftp/arxiv/papers/0709/0709.1207.pdf.
[89] S. N. Coppersmith, “The computational complexity of Kauffman nets and the P versus NP problem,” Physical Review E., vol. 75, 4 pages, 2007.
[90] J. Ladyman, “What does it mean to say that a physical system implements a computation?” Theoretical Computer Science, vol. 410, no. 4-5, pp. 376-383, 2009. · Zbl 1160.68011 · doi:10.1016/j.tcs.2008.09.047
[91] A. Connes, Noncommutative Geometry (Géométrie non commutative), Academic Press, San Diego, Calif, USA, 1994.
[92] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics, Reidel, Dordrecht, The Netherlands, 1984. · Zbl 0541.53059
[93] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press, New York, NY, USA, 2000. · Zbl 0959.68116
[94] R. Landauer, “The physical nature of information,” Physics Letters, Section A, vol. 217, no. 4-5, pp. 188-193, 1996. · Zbl 0972.81520 · doi:10.1016/0375-9601(96)00453-7
[95] W. I. Gasarch, “The P=?NP poll,” SIGACT News, vol. 33, no. 2, pp. 34-47, 2002. · doi:10.1145/1052796.1052804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.