×

In the light of time. (English) Zbl 1186.82047

Summary: The concept of time is examined using the second law of thermodynamics that was recently formulated as an equation of motion. According to the statistical notion of increasing entropy, flows of energy diminish differences between energy densities that form space. The flow of energy is identified with the flow of time. The non-Euclidean energy landscape, i.e. the curved space-time, is in evolution when energy is flowing down along gradients and levelling the density differences. The flows along the steepest descents, i.e. geodesics are obtained from the principle of least action for mechanics, electrodynamics and quantum mechanics. The arrow of time, associated with the expansion of the Universe, identifies with grand dispersal of energy when high-energy densities transform by various mechanisms to lower densities in energy and eventually to ever-diluting electromagnetic radiation. Likewise, time in a quantum system takes an increment forwards in the detection-associated dissipative transformation when the stationary-state system begins to evolve pictured as the wave function collapse. The energy dispersal is understood to underlie causality so that an energy gradient is a cause and the resulting energy flow is an effect. The account on causality by the concepts of physics does not imply determinism; on the contrary, evolution of space-time as a causal chain of events is non-deterministic.

MSC:

82C03 Foundations of time-dependent statistical mechanics
00A79 Physics
80A20 Heat and mass transfer, heat flow (MSC2010)
81P05 General and philosophical questions in quantum theory
83F05 Relativistic cosmology
94A17 Measures of information, entropy

References:

[1] Physiological Reviews 115 pp 485– (1959) · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[2] INT J ASTROBIOL 7 pp 293– (2008) · doi:10.1017/S1473550408004308
[3] Berry, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 392 (1802) pp 45– (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[4] 55 pp 614– (1988) · doi:10.1086/289464
[5] J PHYS A MATH GEN 36 pp 631– (2003) · Zbl 1066.82026 · doi:10.1088/0305-4470/36/3/303
[6] 23 pp 57– (1926) · doi:10.2307/2014377
[7] Annalen der Physik (Leipzig) 17 pp 891– (1905)
[8] MITT PHYS GES ZURICH 18 pp 47– (1916)
[9] Erez, Nature; Physical Science (London) 452 (7188) pp 724– (2008) · doi:10.1038/nature06873
[10] ERKENNTNIS 14 pp 219– (1979)
[11] Reviews of Modern Physics 20 pp 367– (1948) · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[12] Gronholm, Mathematical biosciences 210 (2) pp 659– (2007) · Zbl 1131.62010 · doi:10.1016/j.mbs.2007.07.004
[13] American Journal of Physiology - Gastrointestinal and Liver Physiology 72 pp 514– (2004)
[14] ERKENNTNIS 31 pp 77– (1989) · doi:10.1007/BF01239130
[15] Hubble, PNAS 15 (3) pp 168– (1929) · JFM 55.0573.05 · doi:10.1073/pnas.15.3.168
[16] CURR CHEM BIOL 2 pp 53– (2008)
[17] Jaakkola, Biophysical chemistry 134 (3) pp 232– (2008) · doi:10.1016/j.bpc.2008.02.006
[18] Kaila, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464 (2099) pp 3055– (2008) · Zbl 1152.80303 · doi:10.1098/rspa.2008.0178
[19] Biosystems 95 pp 82– (2008) · Zbl 1134.92001
[20] IBM J RES DEV 5 pp 183– (1961) · Zbl 1160.68305 · doi:10.1147/rd.53.0183
[21] COMMUN MATH PHYS 48 pp 119– (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
[22] PHILOS MAG 34 pp 287– (1867)
[23] INT J ASTROBIOL 1 pp 3– (2002)
[24] Louhivuori, Journal of the American Chemical Society 128 (13) pp 4371– (2006) · doi:10.1021/ja0576334
[25] IL NUOVO CIMENTO 110 pp 1227– (1995) · doi:10.1007/BF02724612
[26] Lucia, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464 (2093) pp 1089– (2008) · Zbl 1143.82019 · doi:10.1098/rspa.2007.0304
[27] PHYS TODAY 38 pp 38– (1985)
[28] HISTOIRE DE LACADEMIE ROYALE DES SCIENCES ET DES BELLES LETTRES 1746 pp 267– (1746)
[29] NACH VD GES D WISS ZU GOETTINGEN MATHPHYS KLASSE 2 pp 235– (1918)
[30] PHYS REV B 38 pp 8602– (1988) · doi:10.1103/PhysRevB.38.8602
[31] Onuchic, PNAS 92 (8) pp 3626– (1995) · doi:10.1073/pnas.92.8.3626
[32] Astrophysical Journal 142 pp 419– (1965) · doi:10.1086/148307
[33] Piilo, Physical Review Letters 100 (18) pp 180402– (2008) · Zbl 1228.82061 · doi:10.1103/PhysRevLett.100.180402
[34] ACTA MATHEMATICA 13 pp 1– (1890)
[35] PHYS Z 10 pp 323– (1909)
[36] ENTROPY 9 pp 83– (2007) · doi:10.3390/e9020083
[37] PHYS. LETT. A 136 pp 264– (1989) · doi:10.1016/0375-9601(89)90811-6
[38] 19 pp 25– (1994) · doi:10.1016/0895-7177(94)90188-0
[39] SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN 1 pp 189– (1916)
[40] Sharma, Biophysical chemistry 127 (1-2) pp 123– (2007) · doi:10.1016/j.bpc.2007.01.005
[41] 388 pp 851– (2009) · doi:10.1016/j.physa.2008.12.004
[42] J MATH PHYS 18 pp 756– (1977) · doi:10.1063/1.523304
[43] Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 232 pp 181– (1987)
[44] Biophysical Journal 2008 pp 654672– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.