×

Moving objects localization by local regions based level set: application on urban traffic. (English) Zbl 1312.68199

Summary: In this paper, a novel method for locating multiple moving objects in a video sequences captured by a stationary camera is proposed. In order to determine the precise location of the objects in an image, a new local regions based level set model is carried out. The whole process consists of two main parts: the global detection and the fine localization. During the global detection, the presence or absence of an object in an image is determined by the Mixture of Gaussians method. For the fine localization, we propose to reformulate global energies by utilizing little squared windows centered on each point over a thin band surrounding the zero level set, hence the object contour can be reshaped into small local interior and exterior regions that lead to compute a family of adaptive local energies, which enables us to well localize the moving objects. Moreover, we propose to adapt the smoothness of the contours, and the accuracy of the objects’ perimeter of different shapes with an automatic stopping criterion. The proposed method has been tested on different real urban traffic videos, and the experiment results demonstrate that our algorithm can locate effectively and accurately the moving objects; optimize the results of the localized objects and also decrease the computations load.

MSC:

68T45 Machine vision and scene understanding
Full Text: DOI

References:

[1] Paragios, N., Tziritas, G.: Adaptive detection and localisation of moving objects in image sequences. Signal Process. Image Commun. 14(4), 277-296 (1999) · doi:10.1016/S0923-5965(98)00011-3
[2] Sifakis, E., Tziritas, G.: Moving object localisation using a multi-label fast marching algorithm. Signal Process. Image Commun. 16(10), 963-976 (2001) · doi:10.1016/S0923-5965(00)00056-4
[3] Jong Ryul, K.; Young Shik, M., Automatic localization and tracking of moving objects using adaptive snake algorithm, 729-733 (2003)
[4] Sifakis, E.; Tziritas, G., Robust object boundary determination using a locally adaptive level set algorithm, 141-144 (2003)
[5] Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475-1490 (2004) · doi:10.1109/TPAMI.2004.108
[6] Frejlichowski, D., Automatic localization of moving vehicles in image sequences using morphological operations, 1-4 (2008)
[7] Li, C.; Kao, C.; Gore, J.; Ding, Z., Implicit active contours driven by local binary fitting energy, 1-7 (2007)
[8] Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520-531 (2009) · doi:10.1016/j.compmedimag.2009.04.010
[9] Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199-1206 (2010) · Zbl 1192.68624 · doi:10.1016/j.patcog.2009.10.010
[10] H, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. Signal Process. 92(2), 587-600 (2011)
[11] Tao, W., Tai, X.-C.: Multiple piecewise constant with geodesic active contours (MPC-GAC) framework for interactive image segmentation using graph cut optimization. Image Vis. Comput. 29, 499-508 (2011) · doi:10.1016/j.imavis.2011.03.002
[12] Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266-277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[13] Yezzi, J.A., Tsai, A., Willsky, A.: A fully global approach to image segmentation via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13(1), 195-216 (2002) · doi:10.1006/jvci.2001.0500
[14] Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271-293 (2002) · Zbl 1012.68782 · doi:10.1023/A:1020874308076
[15] Lankton, S., Nainb, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. Proc. SPIE Med. Imaging Symp. 6510(3), 6510-6519 (2007)
[16] Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029-2039 (2008) · Zbl 1371.94213 · doi:10.1109/TIP.2008.2004611
[17] Rousson, M., Lenglet, C., Deriche, R.: Level set and region based propagation for diffusion tensor MRI segmentation. Comput. Vis. Math. Methods Med. Biom. Image Anal. 3117(2004), 123-134 (2004) · doi:10.1007/978-3-540-27816-0_11
[18] Stauffer, C.; Grimson, W., Adaptive background mixture models for real time tracking, 246-252 (1999)
[19] Cheung, S.-C.S., Kamath, C.: Robust background subtraction with foreground validation for urban traffic video. EURASIP J. Appl. Signal Process. 2005(14), 2330-2340 (2005) · Zbl 1097.68658 · doi:10.1155/ASP.2005.2330
[20] Al Najjar, M.; Ghosh, S.; Bayoumi, M., A hybrid adaptive scheme based on selective Gaussian modeling for real-time object detection, 936-939 (2009)
[21] He, F.; Wang, J.; Zhang, X.; Gao, Y., A moving objects detection algorithm using iterative division and Gaussian mixture model, 229-233 (2010)
[22] Shi, Y.; Cheng, S.; Quan, S.; Chen, J.; Chen, D., Moving objects detection by Gaussian mixture model: a comparative analysis, 1121-1124 (2011)
[23] Ardila, J., Bijker, W., Tolpekin, A., Stein, A.: Multitemporal change detection of urban trees using localized region-based active contours in VHR images. Remote Sens. Environ. 124, 413-426 (2012) · doi:10.1016/j.rse.2012.05.027
[24] Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668-676 (2010) · doi:10.1016/j.imavis.2009.10.009
[25] Dzyubachyk, O.; Niessen, W.; Meijering, E., Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images, 185-188 (2008)
[26] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321-331 (1998) · doi:10.1007/BF00133570
[27] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61-79 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[28] Osher, S.: Fronts propagating with curvature dependent speed algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[29] Zhu, G.P., Zhang Sh, Q., Zeng, Q.S.H., Wang, Ch.H.: Boundary-based image segmentation using binary level set method. SPIE Opt. Eng. 46(5) (2007)
[30] Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some application to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171-1181 (2006) · Zbl 1286.94018 · doi:10.1109/TIP.2005.863956
[31] Mumford, D.; Shah, J., Boundary detection by minimizing functional, 22-26 (1985)
[32] Li, C. M.; Xu, C. Y.; Gui, C. F.; Fox, M. D., Level set evolution without re-initialization: a new variational formulation, 430-436 (2005)
[33] Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford-Shah functional. Scale Space Var. Methods Comput. Vis. 4485(2007), 203-213 (2007) · doi:10.1007/978-3-540-72823-8_18
[34] Paragios, N., Deriche, R.: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 1-15 (2000) · doi:10.1109/TPAMI.2000.845385
[35] Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169-1186 (2001) · Zbl 1062.68595 · doi:10.1109/83.935033
[36] Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford-Shah model. Int. J. Comput. Vis. 50, 271-293 (2002) · Zbl 1012.68782 · doi:10.1023/A:1020874308076
[37] Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229-251 (1994) · doi:10.1007/BF01427153
[38] Paragios, N.; Deriche, R., Geodesic active regions and level set methods for supervised texture segmentation, 926-932 (1999)
[39] Vasilevskiy, A., Siddiqi, K.: Flux-maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565-1578 (2002) · doi:10.1109/TPAMI.2002.1114849
[40] Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2-22 (1999) · Zbl 0919.65074 · doi:10.1006/jcph.1998.6090
[41] Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. J. Comput. Phys. 114(1), 146-159 (1994) · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[42] Rosenthal, P.; Molchanov, V.; Linsen, L., A narrow band level set method for surface extraction from unstructured point-based volume data, 73-80 (2010)
[43] Moursi, S. G.; El-Sakka, M. R., Active contours initialization for ultrasound Carotid Artery image, 629-636 (2008)
[44] http://i21www.ira.uka.de/image_sequences/, Institut für Algorithmen und Kognitive Systeme
[45] ftp://ftp.pets.rdg.ac.uk/pub/PETS2001/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.