×

Hyperreflexivity of the derivation space of some group algebras. (English) Zbl 1203.47019

Let \(A\) be a complex Banach algebra and \(X\) be a Banach \(A\)-bimodule. A linear map \(D:A\to X\) is called a derivation if \(D(ab)=D(a)\cdot b+a\cdot D(b)\) holds for arbitrary \(a, b\in A\). For instance, let \(x\in X\). Then \(\text{ad}_{x}(a)=a\cdot x - x\cdot a\) \((a\in A)\) defines a continuous derivation \(\text{ad}_{x}\); derivations of this type are called inner derivations. Denote by \(\text{Der}(A,X)\) the space of all continuous derivations from \(A\) to \(X\); in particular \(\text{Der}(A)\) is the space of all continuous derivations on \(A\). A Banach algebra \(A\) is said to be amenable if, for every dual \(A\)-bimodule \(X^*\), each element of \(\text{Der}(A,X^*)\) is an inner derivation. For a bounded linear operator \(T:A\to X\), let \(\text{der}(T)=\sup\{ \| T(ab)-T(a)\cdot b-a\cdot T(b)\|:a,b \in A, \| a\|=\| b\|=1\}\). If \(A\) is an amenable Banach algebra, then there exists a constant \(C>0\) such that, for every dual Banach \(A\)-bimodule \(X^*\) and for every bounded linear operator \(T:A\to X^*\), there exists \(\varphi \in X^*\) such that \(\| T- \text{ad}_{\varphi}\| \leq C \operatorname{der}(T)\). It follows from this that, under some additional conditions on \(A\), which are satisfied by a group algebra of an amenable group and by the algebra of compact operators on a separable Hilbert space, for instance, one has \(\text{dist}(T,\text{Der}(A))\leq C\operatorname{der}(T)\) for every bounded linear operator \(T\) on \(A\).
Let \(X\) and \(Y\) be Banach spaces and let \(B(X,Y)\) be the Banach space of all bounded linear operators from \(X\) to \(Y\). The Arveson distance of \(T\in B(X,Y)\) to a closed linear subspace \({\mathcal S}\subseteq B(X,Y)\) is defined as \(\alpha(T,{\mathcal S})=\sup_{\| x\| \leq 1}\inf_{S\in {\mathcal S}}\| Tx-Sx\|\). One has \(\alpha(T,{\mathcal S}) \leq \text{dist}(T,{\mathcal S})\) for every space \({\mathcal S}\subseteq B(X,Y)\) and every \(T\in B(X,Y)\). If there exists a constant \(C\geq 1\) such that \(\text{dist}(T,{\mathcal S})\leq C \alpha(T,{\mathcal S})\), then \({\mathcal S}\) is said to be a hyperreflexive space of operators. It is proved that \(\text{Der} (L^{1}(G))\) is a hyperreflexive space whenever \(G\) is an amenable group in the class [SIN].

MSC:

47B47 Commutators, derivations, elementary operators, etc.
47B48 Linear operators on Banach algebras
43A20 \(L^1\)-algebras on groups, semigroups, etc.
46H05 General theory of topological algebras
Full Text: DOI

References:

[1] Alaminos J., Brešar M., Extremera J., Villena A.R.: Characterizing homomorphisms and derivations on C*-algebras. Proc. R. Soc. Edinburgh Sect. A 137, 1–7 (2007) · Zbl 1144.47030
[2] Alaminos J., Brešar M., Extremera J., Villena A.R.: Maps preserving zero products. Studia Math. 193(2), 131–159 (2009) · Zbl 1168.47029 · doi:10.4064/sm193-2-3
[3] Alaminos, J., Extremera, J., Villena, A.R.: Approximately zero product preserving maps. Isr. J. Math. (to appear) · Zbl 1209.47013
[4] Brešar M.: Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. R. Soc. Edinburgh Sect. A 137, 9–21 (2007) · Zbl 1130.16018
[5] Chebotar M.A., Ke W.-F., Lee P.-H.: Maps characterized by action on zero products. Pacific J. Math. 216, 217–228 (2004) · Zbl 1078.16034 · doi:10.2140/pjm.2004.216.217
[6] Dales, H.G.: Banach algebras and automatic continuity. London Mathematical Society Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, pp. xviii+907 (2000). ISBN: 0-19-850013-0 · Zbl 0981.46043
[7] Hadwin D.: A general view of reflexivity. Trans. Am. Math. Soc. 344, 325–360 (1994) · Zbl 0802.46010 · doi:10.2307/2154719
[8] Hadwin D., Li J.: Local derivations and local automorphisms. J. Math. Anal. Appl. 290, 702–714 (2004) · Zbl 1044.46040 · doi:10.1016/j.jmaa.2003.10.015
[9] Jing W., Lu S., Li P.: Characterisations of derivations on some operator algebras. Bull. Aust. Math. Soc. 66, 227–232 (2002) · Zbl 1035.47019 · doi:10.1017/S0004972700040077
[10] Johnson B.E.: Approximately multiplicative maps between Banach algebras. J. Lond. Math. Soc. 37(2), 294–316 (1988) · Zbl 0652.46031 · doi:10.1112/jlms/s2-37.2.294
[11] Johnson B.E.: Local derivations on C*-algebras are derivations. Trans. Am. Math. Soc. 353(1), 313–325 (2000) · Zbl 0971.46043 · doi:10.1090/S0002-9947-00-02688-X
[12] Larson D.R.: Reflexivity, algebraic reflexivity and linear interpolation. Am. J. Math. 110, 283–299 (1988) · Zbl 0654.47023 · doi:10.2307/2374503
[13] Losert V.: The derivation problem for group algebras. Ann. Math. (2) 168(1), 211–246 (2008) · Zbl 1171.43004 · doi:10.4007/annals.2008.168.221
[14] Palmer, T.W.: Banach algebras and the general theory of *-algebras, vol. II, *-algebras. In: Encyclopedia of Mathematics and its Applications, 79. Cambridge University Press, Cambridge, pp. i-xii and 795-1617 (2001). ISBN: 0-521-36638-0 · Zbl 0983.46040
[15] Runde, V.: Lectures on amenability. Lecture Notes in Mathematics, 1774. Springer-Verlag, Berlin, pp. xiv+296 (2002). ISBN: 3-540-42852-6 · Zbl 0999.46022
[16] Samei E.: Approximately local derivations. J. Lond. Math. Soc. 71, 759–778 (2005) · Zbl 1072.47033 · doi:10.1112/S0024610705006496
[17] Schweizer J.: An analogue of Peetre’s theorem in non-commutative topology. Q. J. Math. 52(4), 499–506 (2001) · Zbl 1016.46046 · doi:10.1093/qjmath/52.4.499
[18] Shulman V.S.: Operators preserving ideals in C *-algebras. Studia Math. 109, 67–72 (1994) · Zbl 0821.46085
[19] Zhu J., Xiong C.: Generalized derivable mappings at zero point on some reflexive operator algebras. Linear Algebra Appl. 397, 367–379 (2005) · Zbl 1067.47048 · doi:10.1016/j.laa.2004.11.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.