×

On the omega-limit map on 1-dimensional continua. (English) Zbl 1478.37012

Summary: Let \(X\) be a compact connected metric space and \(f : X \rightarrow X\) be a continuous map. In this paper, we prove that if \(f\) has a periodic point and \(\omega_f\) is continuous then the almost periodic set is a finite union of cyclically permuted subcontinua of \(X\). In particular, \(AP(f)\) is connected whenever \(f\) has a fixed point. Also we show that for dendrites with closed endpoint set, if \(\omega_f(a)\) is infinite, then \(\omega_f\) is continuous at \(a\) if, and only if, \(f\) is equicontinuous at \(a\). We show that the later result fails whenever \(\omega_f(a)\) is finite or the endpoints set is not closed. We give an example of a local dendrite map \(f : X \rightarrow X\) for which \(\omega_f\) is continuous, \(f_{|X_{\infty}}\) is equicontinuous but \(f\) is not equicontinuous on the whole space \(X\). Finally, we answer to an open question raised by G. Acosta and D. Fernández-Bretón [Fundam. Math. 254, No. 2, 215–240 (2021; Zbl 1514.37056)] by providing a class of dendrites on which the equicontinuity of \(f_{|X_{\infty}}\) imply the equicontinuity of \(f\).

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B45 Continua theory in dynamics
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
54F50 Topological spaces of dimension \(\leq 1\); curves, dendrites

Citations:

Zbl 1514.37056
Full Text: DOI

References:

[1] Abdelli, H.; Askri, G., Chain recurrent points of monotone graph maps and CR-Pm property on local dendrites, J. Diff. Equ. Appl., 25, 1, 119-141 (2019) · Zbl 1406.37021 · doi:10.1080/10236198.2018.1561881
[2] Acosta, G.; Fernández, D., Equicontinuous mappings on finite trees, Fund. Math., 254, 2, 215-240 (2021) · Zbl 1514.37056 · doi:10.4064/fm923-9-2020
[3] Arévalo, D.; Charatonik, WJ; Pellicer-Covarrubias, P.; Simn, L., Dendrites with a closed set of endpoints, Top. App., 115, 1-17 (2001) · Zbl 0979.54035 · doi:10.1016/S0166-8641(00)00058-4
[4] Askri, G., Equicontinuity and Li-Yorke pairs of dendrite maps, Dyn. Syst. Int. J., 35, 4, 597-608 (2020) · Zbl 1468.37010 · doi:10.1080/14689367.2020.1759510
[5] Askri, G.; Naghmouchi, I., Pointwise recurrence on local dendrites, Qualitative Theory Dyn. Syst., 19, 1, 629-637 (2020) · Zbl 1432.37033 · doi:10.1007/s12346-020-00347-8
[6] Auslander, J.; Katznelson, Y., Continuous maps of the circle without periodic points, Isr. J. Math., 32, 4, 375-381 (1979) · Zbl 0442.54011 · doi:10.1007/BF02760466
[7] Block, L.S., Coppel, W.A.: Dynamics in One Dimension, Lecture Notes in Math., vol. 1513. Springer (1992) · Zbl 0746.58007
[8] Blokh, AM, Pointwise-recurrent maps on uniquely arcwise connected locally arcwise connected spaces, Proc. AMS, 143, 9, 3985-4000 (2015) · Zbl 1359.37034 · doi:10.1090/S0002-9939-2015-12589-0
[9] Bruckner, AM; Hu, T., Equicontinuity of iterates of an interval map, Tamkang. J. Math., 21, 287-294 (1990) · Zbl 0718.26004
[10] Camargo, J.; Rincón, M.; Uzcátegui, C., Equicontinuity of maps on dendrites, Chaos Solitons Fractals, 126, 1-6 (2019) · Zbl 1448.54023 · doi:10.1016/j.chaos.2019.05.033
[11] Illanes, A.; Nadler, SB Jr, Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math (1978), New York: Marcel Dekker Inc, New York
[12] Mai, J., The structure of equicontinuous maps, Trans. AMS, 355, 10, 4125-4136 (2003) · Zbl 1026.54031 · doi:10.1090/S0002-9947-03-03339-7
[13] Mai, J., Shi, E.: \( \overline{R} = \overline{P}\) for maps of dendrites \(X\) with Card(End(X))<c .(2009) · Zbl 1168.37310
[14] Sun, TX; Su, GW; Xi, HJ, Equicontinuity of maps on a dendrite with finite branch points, Acta Mathematica Sinica, 33, 1125-1130 (2017) · Zbl 1373.37029 · doi:10.1007/s10114-017-6289-x
[15] Valaristos, A., Equicontinuity of iterates of circle maps, J. Math. Math. Sci., 2, 3, 453-458 (1998) · Zbl 0937.54026 · doi:10.1155/S0161171298000623
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.